Hydraulic conductivity of bentonite-sand mixtures

2000 ◽  
Vol 37 (2) ◽  
pp. 406-413 ◽  
Author(s):  
P V Sivapullaiah ◽  
A Sridharan ◽  
V K Stalin

The use of bentonite alone or amended with natural soils for construction of liners for water-retention and waste-containment facilities is very common. The importance of bentonite content in reducing the hydraulic conductivity of liners is well recognised. The study illustrates the role of the size of the coarser fraction in controlling the hydraulic conductivity of the clay liner. It has been shown that at low bentonite contents the hydraulic conductivity of the liner varies depending on the size of the coarser fraction apart from clay content. At a given clay content, the hydraulic conductivity increases with an increase in the size of the coarser fraction. But when the clay content is more than that which can be accommodated within the voids of the coarser fractions, the hydraulic conductivity is controlled primarily by clay content alone. Four different methods of predicting hydraulic conductivity of the liners are presented. Using two constants, related to the liquid limit, the hydraulic conductivity can be predicted at any void ratio.Key words: clays, hydraulic conductivity, liquid limit, liners, void ratio.

Clay Minerals ◽  
1996 ◽  
Vol 31 (2) ◽  
pp. 243-252 ◽  
Author(s):  
L. H. Mollins ◽  
D. I. Stewart ◽  
T. W. Cousens

AbstractOne-dimensional swelling tests and hydraulic conductivity tests have been performed at vertical effective stresses up to 450 kPa on Na-bentonite powder and compacted sand/Na-bentonite mixtures (5, 10 and 20% bentonite by weight) to investigate the use of bentonite-improved soils for waste containment. It was found that bentonite powder swells to reach a final state described by a single straight line on a plot of void ratio against the logarithm of vertical effective stress, regardless of preparation technique. Swelling of sand/bentonite mixtures expressed in terms of the clay void ratio show a deviation from bentonite behaviour above a stress which depends on the bentonite content. Hydraulic conductivity data for bentonite and sand/bentonite mixtures indicate an approximately linear relationship between logarithm of hydraulic conductivity and logarithm of void ratio. A design model based on the clay void ratio, and the sand porosity and tortuosity is presented enabling the hydraulic conductivity of a mixture to be estimated.


2020 ◽  
Vol 195 ◽  
pp. 03026
Author(s):  
Marco Rosone ◽  
Alessio Ferrari

The paper presents the results of an experimental research devoted to investigate the response to suction variations of a scaly clay in compacted and reconstituted conditions. Different experimental techniques (axis translation, vapour equilibrium, dew point psychrometer suction measurements) were combined in order to explore the water retention properties in a wide suction range (0 ÷ 110 MPa). Experimental results allowed to define the water retention domains for a constant reference void ratio, highlighting the significant role of the microstructure on the response of the investigated clays. In particular, the collected results showed that in the low-medium suction range, the peculiar microstructural features give to the reconstituted clay a better retention capability than the compacted clay. However, the increasing suction induces a significative volumetric shrinkage on the saturated reconstituted clay, especially when the latter is initially normally consolidated. On the other hand, quite similar retention properties were recognized in the high suction range.


2007 ◽  
Vol 44 (10) ◽  
pp. 1200-1214 ◽  
Author(s):  
Serge-Étienne Parent ◽  
Alexandre Cabral ◽  
Jorge G. Zornberg

A model capable of describing the suction-induced consolidation curve (void ratio function) and water retention curve (WRC) of highly compressible materials (HCM) is developed, validated, and finally applied to describe the WRC of deinking by-products (DBP). DBP are a highly compressible by-product of paper recycling used in geoenvironmental applications. Validation is conducted by modelling the WRC and the void ratio function for a well documented silty sand from Saskatchewan, Canada. The WRC and void ratio function were used to predict its hydraulic conductivity function (k-function). The water content, suction, and volumetric deformation data of DBP are obtained using an experimental technique that allows determination of the WRCs of HCMs that is suitable for prediction of the DBP k-function. The results show that volumetric water contents are underestimated if volume changes are not accounted for, leading to inaccuracies in the WRCs, thus inaccurately predicted k-functions. It is shown that the newly developed model is better suited for HCMs than currently available models, in particular for HCMs that continue to undergo significant volume changes when the applied suction exceeds the air-entry value.


2020 ◽  
Vol 38 (12) ◽  
pp. 1420-1428
Author(s):  
Suryaleen Rout ◽  
Suresh Prasad Singh

Characterization of pond ash-bentonite mixes is made to assess their suitability as liner material for waste disposal facilities by examining the relevant index and engineering properties. Further, a comparative assessment is made between sand-bentonite and pond ash-bentonite mixes for the range of bentonite content varying from 0 to 30% by weight at an interval of 5% to ensure an effective substitution of sand with pond ash. Addition of bentonite to sand or pond ash significantly influences the plasticity, strength and permeability properties. Besides, the shape parameters of the coarser fraction and morphology of compacted mixes also influence the engineering properties. A multiple linear regression equation is suggested to predict the hydraulic conductivity of these mixes by considering the basic material properties such as liquid limit, plasticity index and void ratio as an input variable with a correlation coefficient of 0.92 between the measured and predicted hydraulic conductivity values. At comparable conditions, compacted pond ash-bentonite mixes exhibit higher strength but also higher permeability than sand-bentonite mixes. Pond ash-bentonite and sand-bentonite mixes met the liner requirements when compacted with modified Proctor compaction effort at a minimum bentonite content of 20% and 15%, respectively.


2020 ◽  
Vol 14 (1) ◽  
pp. 278-285
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Aims: Understanding the mechanical performance and applicability of soils is crucial in geotechnical engineering applications. This study investigated the possibility of application of the Random Forest (RF) algorithm – a popular machine learning method to predict the soil unconfined compressive strength (UCS), which is one of the most important mechanical properties of soils. Methods: A total number of 118 samples collected and their tests derived from the laboratorial experiments carried out under the Long Phu 1 power plant project, Vietnam. Data used for modeling includes clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit as input variables, whereas the target is the UCS. Several assessment criteria were used for evaluating the RF model, namely the correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE). Results: The results showed that RF exhibited a strong capability to predict the UCS, with the R value of 0.914 and 0.848 for the training and testing datasets, respectively. Finally, a sensitivity analysis was conducted to reveal the importance of input parameters to the prediction of UCS using RF. The specific gravity was found as the most affecting variable, following by clay content, liquid limit, plastic limit, moisture content and void ratio. Conclusion: This study might help in the accurate and quick prediction of the UCS for practice purpose.


1990 ◽  
Vol 21 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Johnny Fredericia

The background for the present knowledge about hydraulic conductivity of clayey till in Denmark is summarized. The data show a difference of 1-2 orders of magnitude in the vertical hydraulic conductivity between values from laboratory measurements and field measurements. This difference is discussed and based on new data, field observations and comparison with North American studies, it is concluded to be primarily due to fractures in the till.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
MINAKSHI SERAWAT ◽  
V K PHOGAT ◽  
ANIL Abdul KAPOOR ◽  
VIJAY KANT SINGH ◽  
ASHA SERAWAT

Soil crust strength influences seedling emergence, penetration and morphology of plant roots, and, consequently, crop yields. A study was carried out to assess the role of different soil properties on crust strength atHisar, Haryana, India. The soil samples from 0-5 and 5-15 cm depths were collected from 21 locations from farmer’s fields, having a wide range of texture.Soil propertieswere evaluated in the laboratory and theirinfluence on the modulus of rupture (MOR), which is the measure of crust strength, was evaluated.The MOR of texturally different soils was significantly correlated with saturated hydraulic conductivity at both the depths. Dispersion ratio was found to decrease with an increase in fineness of the texture of soil and the lowest value was recorded in silty clay loam soil,which decreased with depth. The modulus of rupture was significantly negatively correlative with the dispersion ratio.There was no role of calcium carbonate in influencing the values of MOR of soils. Similarly,the influence of pH, EC and SAR of soil solution on MOR was non-significant.A perusal of thevalues of the correlations between MOR and different soil properties showed that the MOR of soils of Haryana are positively correlated with silt + clay (r = 0.805) followed by water-stable aggregates (r = 0.774), organic carbon (r = 0.738), silt (r = 0.711), mean weight diameter (r = 0.608) and clay (r = 0.593) while negatively correlated with dispersion ratio (r = - 0.872), sand (r = -0.801) and hydraulic conductivity (r = -0.752) of soils.


Sign in / Sign up

Export Citation Format

Share Document