Sulfate as a ligand in ruthenium(II) and (III) ammines

2001 ◽  
Vol 79 (5-6) ◽  
pp. 679-687 ◽  
Author(s):  
Hildo Antonio dos Santos Silva ◽  
Bruce R McGarvey ◽  
Regina Helena de Almeida Santos ◽  
Mauro Bertotti ◽  
Vânia Mori ◽  
...  

The trans-[RuSO4(NH3)4(L)]Cl complexes, (L = nicotinamide (nia), L-histidine (L-hist), 4-picoline (4-pic), 4-chloropyridine (4-Clpy), isonicotinamide (isn), pyrazine (pyz), 4-aminopyridine (4-NH2py), 4-cyanopyridine (4-CNpy), pyridine (py), imidazole (Him), and water (H2O)), were characterized by elemental analysis cyclic voltammetry, UV-vis, IR, and electron paramagnetic resonance spectroscopies. From the four ν (SO42–) observed only ν3 and ν4 split in two bands each for the sulfate unidentate coordination. The values of Δ/ξ parameters, extracted from g values, allow us to write the following order of increasing π-donation ability: pyz < (py, 4-CNpy, 4-Clpy. 4-pic, isn, nia) < Him < L-hist < 4-NH2py. The intense absorption in the 317-347 nm (ε ~ 2.3-5.6 × 103 M-1 cm-1) region was tentatively assigned to sulfate-to-metal charge transfer (LMCT) and the absorption in the range of 230-270 nm (ε ~ 2 - 6 × 103 M-1 cm-1) assigned to an internal (IL) π-π* transition in the heterocyclic ligands. The rate for the sulfate aquation in trans-[RuSO4(NH3)4L]0 complexes was evaluated through chronopotentiometric measurements and are in the 2.6 s-1 (chloropyridine) to 20 s-1 (pyrazine) range. The SO42– is aquated in trans-[RuIIISO4(NH3)4(4-pic)]Cl at the specific rate constant of (1.4 ± 0.4) × 10-5 s-1, which is very much slower than in trans-[RuIISO4(NH3)4(4-pic)] (5.4 s-1). The X-ray crystal structure data show that the Ru-Cl (2.3444(9) Å) and Ru-NH3 (2.100(2) Å) mean distances in trans-[RuCl(NH3)4(4-pic)]Cl2·H2O are similar to the ones observed in other tetraammineruthenium(III) complexes.Key words: ruthenium, sulfate, ammines.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2123
Author(s):  
Maria Râpă ◽  
Maria Stefan ◽  
Paula Popa ◽  
Dana Toloman ◽  
Cristian Leostean ◽  
...  

The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0–1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (˙OOH) radicals as assessed using electron paramagnetic resonance (EPR) spectroscopy coupled with a spin trapping method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Ulyanov ◽  
Dmitrii Stolbov ◽  
Serguei Savilov

Abstract Jellyfish-like graphene nanoflakes (GNF), prepared by hydrocarbon pyrolysis, are studied with electron paramagnetic resonance (EPR) method. The results are supported by X-ray photoelectron spectroscopy (XPS) data. Oxidized (GNFox) and N-doped oxidized (N-GNFox) flakes exhibit an extremely high EPR response associated with a large interlayer interaction which is caused by the structure of nanoflakes and layer edges reached by oxygen. The GNFox and N-GNFox provide the localized and mobile paramagnetic centers which are silent in the pristine (GNF p ) and N-doped (N-GNF) samples. The change in the relative intensity of the line corresponding to delocalized electrons is parallel with the number of radicals in the quaternary N-group. The environment of localized and mobile electrons is different. The results can be important in GNF synthesis and for explanation of their features in applications, especially, in devices with high sensitivity to weak electromagnetic field.


2021 ◽  
Author(s):  
jian Liu ◽  
Melissa Bollmeyer ◽  
Yujeong Kim ◽  
Dengmengfei Xiao ◽  
Samantha N. Macmillan ◽  
...  

Mononuclear Pd(I) species are putative intermediates in Pd-catalyzed reactions, but our knowledge about them is limited due to difficulties in accessing them. Herein, we report the isolation of a Pd(I) amido complex, [(BINAP)Pd(NHArTrip )] (BINAP = 2,2′- bis(diphenylphosphino)-1,1′-binaphthalene, ArTrip = 2,6-bis(2’,4’,6’-triisopropylphenyl)phenyl), from the reaction of (BINAP)PdCl2 with LiNHArTrip. This Pd(I) amido species has been characterized by X-ray crystallography, electron paramagnetic resonance, and multi-edge Pd Xray absorption spectroscopy. Theoretical study revealed that, while the 3-electron-2-center π interaction between Pd and N in the Pd(I) complex imposes severe Pauli repulsion in its Pd–N bond, pronounced attractive inter-ligand dispersion force aids its stabilization. In accord with its electronic features, reactions of homolytic Pd–N bond cleavage and deprotonation of primary amines are observed on the Pd(I) amido complex.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650039 ◽  
Author(s):  
Jingyuan Piao ◽  
Li-Ting Tseng ◽  
Kiyonori Suzuki ◽  
Jiabao Yi

Na-doped ZnO nanorods have been fabricated through a hydrothermal method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the d spacing of ZnO increases with increasing doping concentration, suggesting the effective incorporation of dopant Na in the samples. Electron paramagnetic resonance (EPR) measurements indicate that there are shallow donors in pure ZnO samples and the shallow donors are strongly prohibited by Na doping. In addition, the resonance at g = 2.005 suggests the formation of Zn vacancies. Magnetic measurements indicate that pure ZnO is paramagnetic and Na doping leads to ferromagnetism at room temperature. Moreover, 0.5% Na-doped ZnO nanorods exhibits the largest saturation magnetization.


2006 ◽  
Vol 295 (1) ◽  
pp. 135-140 ◽  
Author(s):  
Kátia Cylene Lombardi ◽  
Antonio Salvio Mangrich ◽  
Fernando Wypych ◽  
Ubirajara Pereira Rodrigues-Filho ◽  
José L. Guimarães ◽  
...  

Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 637
Author(s):  
Natalia Tereba ◽  
Tadeusz M. Muzioł ◽  
Robert Podgajny ◽  
Grzegorz Wrzeszcz

In this paper, three new heterometallic compounds were described and compared with the molecular formula [Cu(pn)2Zn(NCS)4] (1), [Cu(N,N-Me2-en)2Zn(NCS)4] (2), [Cu(N-Me-en)2Zn(NCS)4]∙½H2O (3) where pn = 1,2−diaminopropane, N,N-Me2-en = N,N‒dimethylethylenediamine and N-Me-en = N-methylethylenediamine, respectively. The compounds mentioned above were characterized by elemental analysis, infrared (IR), electronic, electron paramagnetic resonance (EPR) spectra, and magnetic studies. Crystal structures for 1 and 2 were determined by X-ray analysis. Copper(II) in these complexes adopts 4 + 2 coordination with two elongated (in 2 very long and considered as semi-coordination) Cu-S bonds. The Cu-N and Cu-S bond lengths depend on substituent position affecting steric hindrance and hence a topology of the chain. Both chains form different zigzag patterns characterized by one or two Cu-Zn distance values. Weak magnetic interaction is observed, ferromagnetic in the case of 1 and antiferromagnetic in the case of 2, due to diversity of the above structural features.


Sign in / Sign up

Export Citation Format

Share Document