2000 Macromolecular Science and Engineering Award LectureThe versatility of azobenzene polymers

2001 ◽  
Vol 79 (7) ◽  
pp. 1093-1100 ◽  
Author(s):  
Almeria Natansohn ◽  
Paul Rochon

The well-known trans–cis–trans photoisomerization of azobenzenes produces at least three different kinds of motion in the polymer materials to which the azobenzenes are bound. The first is a photoinduced motion of the azobenzene groups only, and they can align in a selected position with respect to the light polarization. The second is a macroscopic motion of huge amounts of polymeric material, producing surface deformation, and the third is a reorganization of smectic domains in liquid crystalline polymers. These motions and their consequences are briefly discussed in relation to the polymer structure and some possible photonic applications are mentioned.Key words: photoinduced orientation, azobenzene polymers, surface gratings, photonics, thermochromism, photochromism, photorefractivity, photoinduced chirality and switching.

Author(s):  
Patricia M. Wilson ◽  
David C. Martin

Efforts in our laboratory and elsewhere have established the utility of low dose high resolution electron microscopy (HREM) for imaging the microstructure of crystalline and liquid crystalline polymers. In a number of polymer systems, direct imaging of the lattice spacings by HREM has provided information about the size, shape, and relative orientation of ordered domains in these materials. However, because of the extent of disorder typical in many polymer microstructures, and because of the sensitivity of most polymer materials to electron beam damage, there have been few studies where the contrast observed in HREM images has been analyzed in a quantitative fashion.Here, we discuss two instances where quantitative information about HREM images has been used to provide new insight about the organization of crystalline polymers in the solid-state. In the first, we study the distortion of the polymer lattice planes near the core of an edge dislocation and compare these results to theories of dislocations in anisotropic and liquid crystalline solids. In the second, we investigate the variations in HREM contrast near the edge of wedge-shaped samples. The polymer used in this study was the diacetylene DCHD, which is stable to electron beam damage (Jc = 20 C/cm2) and highly crystalline. The instrument used in this work was a JEOL 4000 EX HRTEM with a beam blanidng device. More recently, the 4000 EX has been installed with instrumentation for dynamically recording scattered electron beam currents.


2015 ◽  
Vol 21 (8) ◽  
pp. 3174-3177 ◽  
Author(s):  
Jun-ichi Mamiya ◽  
Akito Kuriyama ◽  
Naoki Yokota ◽  
Munenori Yamada ◽  
Tomiki Ikeda

2020 ◽  
Author(s):  
Christian Harito ◽  
Listya Utari ◽  
Brian Yuliarto ◽  
setyo purwanto ◽  
Syed S.J. Zaidi ◽  
...  

The development of smart polymer materials is reviewed and illustrated. Important examples of these polymers include conducting polymers, ionic gels, stimulus-response be used polymers, liquid crystalline polymers and piezoelectric materials, which have desirable properties for use in wearable sensors. This review outlines the mode of action in these types of smart polymers systems for utilisation as wearable sensors. Categories of wearable sensors are considered as tattoo-like designs, patch-like, textile-based, and contact lens-based sensors. The advantages and disadvantages of each sensor types are considered together with information on the typical performance. The research gap linking smart polymer materials to wearable sensors with integrated power systems is highlighted. Smart polymer systems may be used as part of a holistic approach to improve wearable devices and accelerate the integration of wearable sensors and power systems, particularly in health care.


2004 ◽  
Vol 76 (7-8) ◽  
pp. 1479-1497 ◽  
Author(s):  
Cristina Cojocariu ◽  
P. Rochon

The following article is a tribute to the late Almeria Natansohn and is based on a brief summary of her research in azopolymers. She showed that reversible trans–cis–trans photoisomerization of aromatic azo groups covalently bonded within polymers could trigger a variety of motions in the polymer materials at molecular, nanometer, and micrometer levels. The photoinduced motions could be limited only to the azo rigid chromophore or could involve many polymer chains and ordered domains. Some of the effects of these motions such as reversible photo-orientation of chromophores, amplification effects, photorefractive effects, formation of surface relief gratings (SRGs), and photoinduced chirality and switching in amorphous and liquid-crystalline (LC) polymer films are discussed in relation to the polymer structure and physical parameters. Possible photonic applications originating from these phenomena are also mentioned.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
Christine M. Dannels ◽  
Christopher Viney

Processing polymers from the liquid crystalline state offers several advantages compared to processing from conventional fluids. These include: better axial strength and stiffness in fibers, better planar orientation in films, lower viscosity during processing, low solidification shrinkage of injection moldings (thermotropic processing), and low thermal expansion coefficients. However, the compressive strength of the solid is disappointing. Previous efforts to improve this property have focussed on synthesizing stiffer molecules. The effect of microstructural scale has been overlooked, even though its relevance to the mechanical and physical properties of more traditional materials is well established. By analogy with the behavior of metals and ceramics, one would expect a fine microstructure (i..e. a high density of orientational defects) to be desirable.Also, because much microstructural detail in liquid crystalline polymers occurs on a scale close to the wavelength of light, light is scattered on passing through these materials.


Sign in / Sign up

Export Citation Format

Share Document