A theoretical study of the 77Se NMR and vibrational spectroscopic properties of SenS8–n ring molecules

2002 ◽  
Vol 80 (11) ◽  
pp. 1435-1443 ◽  
Author(s):  
J Komulainen ◽  
R S Laitinen ◽  
R J Suontamo

The structures and spectroscopic properties of SenS8–n ring molecules have been studied by the use of ab initio molecular orbital techniques and density functional techniques involving Stuttgart relativistic large core effective core potential approximation with double zeta basis sets for valence orbitals augmented by two polarization functions for both sulfur and selenium. Full geometry optimizations have been carried out for all 30 isomers at the Hartree-Fock level of theory. The optimized geometries and the calculated fundamental vibrations and Raman intensities of the SenS8–n molecules agree closely with experimental information where available. The nuclear magnetic shielding tensor calculations have been carried out by the Gauge-independent atomic orbital method at the DFT level using Becke's three-parameter hybrid functional with Perdew/Wang 91 correlation. The isotropic shielding tensors correlate well with the observed chemical shift data. The calculated chemical shifts provide a definite assignment of the observed 77Se NMR spectroscopic data and can be used in the prediction of the chemical shifts of unknown SenS8–n ring molecules.Key words: selenium sulfides, ab initio, DFT, effective core potentials, geometry optimization, energetics, fundamental vibrations, 77Se chemical shifts.

2004 ◽  
Vol 03 (02) ◽  
pp. 163-168 ◽  
Author(s):  
P. E. HOGGAN

Now that the problems surrounding ab initio calculations over a Slater Type Orbital basis have been solved, it is available in several software packages. For general structures the STOP package (Slater Type Orbital Package) has offered ab initio SCF molecular properties since 1996, the requisite integrals all being evaluated analytically, including the four center term available since 1994. SMILES (Slater Molecular Integrals for Large Electronic Systems) has offered various basis sets, geometry optimization and CI since 2001. For density functional work, ADF, the Amsterdam Density Functional suite of programs, is a project dating from the 1970s with a 2003 edition. In this work the preferred ETOs (Exponential Type Orbitals) will be shown to be the hydrogenic orbitals and similar Coulomb Sturmians. Slater Type Functions (STFs) will be compared to them and suitable equivalent combinations, which are rarely used, given. The correct shielding of the nucleus, resulting from radial factors of hydrogenic orbitals is shown to be essential in the evaluation of precise nuclear shielding tensors for NMR spectroscopy of molecules using ab initio or DFT methods. The case study of benzothiazoles using natural abundance 15N is re-examined and compared with previous work including measurements.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450023 ◽  
Author(s):  
Reza Ghiasi ◽  
Morteza Zaman Fashami ◽  
Amir Hossein Hakimioun

In this work, the interaction of C 20 with N 2 X 2 ( X = H , F , Cl , Br , Me ) molecules has been explored using the B3LYP, M062x methods and 6-311G(d,p) and 6-311+G(d,p) basis sets. The interaction energies (IEs) obtained with standard method were corrected by basis set superposition error (BSSE) during the geometry optimization for all molecules at the same levels of theory. It was found C 20… N 2 H 2 interaction is stronger than the interaction of other N 2 X 2 ( X = F , Cl , Br , Me ) with C 20. Highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively) levels are illustrated by density of states spectra (DOS). The nucleus-independent chemical shifts (NICSs) confirm that C 20… N 2 X 2 molecules exhibit aromatic characteristics. Geometries obtained from DFT calculations were used to perform NBO analysis. Also, 14 N NQR parameters of the C 20… N 2 X 2 molecules are predicted.


2020 ◽  
Vol 12 (4) ◽  
pp. 464-472
Author(s):  
Thaís F. Giacomello ◽  
Gunar V. da S. Mota ◽  
Antônio M. de J. C. Neto ◽  
Fabio L. P. Costa

Chalcones have attracted the attention of researchers for decades, they are biologically classified as secondary metabolites of low molecular weight. These are considered as the precursors of flavonoids and they are widely distributed in plants such as vegetables, fruits, teas and spices. It has been demonstrating that chalcones possess many important bioactivities including properties of antioxidants and other evidence of its potential beneficial effects on health. Chalcone compounds and its derivatives have been showing a growing interest in the therapeutic properties. Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. In the work present a 13C Nuclear magnetic resonance chemical shift protocol of chalcones and derivative based on the application of scaling factor with chalcone molecules. This protocol consists of using density functional theory with gauge-including atomic orbital method to calculating 13C chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of chalcones and derivative.


MRS Advances ◽  
2017 ◽  
Vol 2 (9) ◽  
pp. 507-512
Author(s):  
Ikram Ziti ◽  
M. R. Britel ◽  
Chumin Wang

ABSTRACTThere are growing interests on magnetic nanowires, due to their potential applications in magnetic sensors and recording devices. In this work, we report a comparative ab-initio study based on the Density Functional Theory (DFT) of NixFe1-x nanowire periodic arrays by using atomic-orbital and plane-wave basis respectively through DMol3 and CASTEP codes. After performing the geometry optimization, we calculate the spin-polarized electronic density of states, average interatomic distance, and magnetic moments. For pure Ni nanowires (x = 1, the dependence of the magnetic moment obtained from CASTEP calculations on the cutoff energy, as well as that from DMol3 on the thermal smearing parameter is analyzed in detail. Both ab-initio calculations predict close magnetic moments for each x, being slightly larger those of DMol3 obtained with significantly less computing cost. Finally, these DFT results are compared with experimental data and a good agreement is observed.


2021 ◽  
Vol 9 (2) ◽  
pp. 94-107
Author(s):  
Akin Azizoglu ◽  
◽  
Zuleyha Ozer ◽  
Carikci Sema ◽  
Turgut Kilic ◽  
...  

Sideroxol, a kaurene diterpene, was obtained from the acetone extract of Sideritis stricta plant. The ground-state molecular geometry, vibrational frequencies, and NMR chemical shifts were also investigated by using various density functional theories and Pople basis sets. The computed geometries are in good conformity with the experimental data. The comparison between theory and experiments indicates that B3LYP and M06 methods with the 6-31G(d) basis set are able to provide satisfactory results for predicting vibrational and NMR properties. There seems to be no significant effect of addition of diffuse and polarization functions in the basis set used herein.


2018 ◽  
Vol 29 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Tigran L. Prazyan ◽  
Yuri N. Zhuravlev

A study of the crystal structure, mechanical and acoustic properties of two [Formula: see text] and [Formula: see text] monoclinic phases of naphthalene and anthracene was performed using ab initio method of linear combination of atomic orbitals (LCAO) and basis sets: C_6-21G*, H_3-1p1G. The method was implemented in the CRYSTAL[Formula: see text]14,[Formula: see text]17 software package using electron density functional theory including van der Waals interactions (DFT-D2 and DFT-D3 (BJ)), in the local density approximation (LDA) with VWN exchange-correlation potential, gradient approximation PBE exchange-correlation functional and B3LYP hybrid functional. The calculated elastic constants for the first time are in moderate agreement with experimental data. Bulk modulus [Formula: see text], shear modulus [Formula: see text], Young’s modulus [Formula: see text] and the Poisson’s ratio [Formula: see text], as well as acoustic properties (average velocity of sound [Formula: see text], the Debye temperature [Formula: see text], and acoustic Grüneisen parameter [Formula: see text]) were obtained using the Voigt–Reuss–Hill model.


2018 ◽  
Vol 71 (3) ◽  
pp. 102
Author(s):  
Emma Persoon ◽  
Yuekui Wang ◽  
Gerhard Raabe

Quantum-chemical ab initio, time-independent, as well as time-dependent density functional theory (TD-DFT) calculations were performed on the so far elusive heterocycles inda- and thallabenzene (C5H5In and C5H5Tl), employing several different methods (MP2, CISD, CCSD, CCSD(T), BD, BD(T), QCISD, QCISD(T), CASSCF, DFT/B3LYP), effective core potentials, and different basis sets. While calculations on the MP2 level predict the ground states of the title compounds to be singlets with the first triplet states between 13 and 15 kcal mol−1 higher in energy, single point calculations with the QCISD(T), CCSD(T), and BD(T) methods at CCSD-optimized structures result in energy differences between the singlet and the triplet states in the range between 0.3 and 2.1 kcal mol−1 in favour of the triplet states. According to a CASSCF(8,8) calculation the triplets are also more stable by about 2.5–2.9 kcal mol−1. Calculations were also performed for the C5v-symmetric η5 structural isomers (cyclopentadienylindium, CpIn, and cyclopentadienylthallium, CpTl, Cp = C5H5) of the title compounds. At the highest level of theory employed in this study, C5H5In is between 79 and 88 kcal mol−1 higher in energy than CpIn, while this energy difference is even larger for thallabenzene where C5H5Tl is energetically between 94 and 102 kcal mol−1 above CpTl. In addition we report on the UV/vis spectra calculated with a TD-DFT method as well as on the spectra of the normal modes of C5H5In and C5H5Tl. Both types of spectra might facilitate identification of the title compounds eventually formed in photolysis or pyrolysis experiments.


2010 ◽  
Vol 7 (3) ◽  
pp. 260-272
Author(s):  
M. Monajjemi ◽  
A. Nouri ◽  
H. Monajemi

The hydrogen bonding effects that were produced from interaction of membrane lipid dipalmitoylphosphatidyl-ethanolamine (DPPE) with 1-5 water molecules, has been theoretically  investigated through the quantum mechanical calculations at the Hartree-Fock level of theory and the 3-21G, 6-31G and 6-31G* basis sets with the computational package of Gaussian 98. According to the obtained results of the structural optimization of the isolated DPPE in the gas phase, we can see the evidences of interactions in the head group of this macromolecule (from the molecular point of view we have a proton transfer from the ammonium group to the phosphate oxygen of zwitterionic form. As we know that the hydrogen bonding of DPPE with water molecules which have surrounded its head group plays an important role in the permeability of DPPE. So, in order to understand the microscopic physico-chemical nature of this subject we have analyzed bond and torsion angles of DPPE before and after added water molecules.  In this paper we have theoretically studied the complexes DPPE with water molecules which have surrounded its head group. As mentioned before, this theoretically study has been done through Hartree-Fock level of theory by using simple basis sets. Theoretical data shows that the interaction of head group of DPPE with water molecules causes some changes in the geometry of DPPE which were explained by the contribution of zwitterionic form of DPPE macromolecule, and finally hydrated DPPE becomes stable complex. Comparison between theoretical and experimental geometry data of DPPE macromolecule shows that the calculation at the HF/3-21 level of theory produces results which they are in better agreement with the experimental data. Moreover the hydrogen bonding effects on the NMR shielding tensor of selected atoms in the hydrated complexes of DPPE were reported. The ";Gauge Including Atomic Orbitals"; (GIAO) approaches within the SCF-Hartree-Fock approximation have been used in order to investigate the influence of hydrogen bonding of DPPE-water complex on the shielding tensors. Finally, the solvent affects on the stability of DPPE macromolecule, dipole moment and atomic charge of some selected atoms of DPPE molecule was discussed using Onsager model and Merz-Singh-Kolman schema.   Keywords  : Gauge Including Atomic Orbital, DPPE, hydrogen bonding, solvation, quantum mechanics, ab initio


2019 ◽  
Vol 10 (2) ◽  
pp. 95-101
Author(s):  
Sebile Işık Büyükekşi ◽  
Namık Özdemir ◽  
Abdurrahman Şengül

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document