scholarly journals Comparative experimental and theoretical study on the molecular structure and spectroscopic properties of sideroxol isolated from Sideritis stricta and its electronic properties

2021 ◽  
Vol 9 (2) ◽  
pp. 94-107
Author(s):  
Akin Azizoglu ◽  
◽  
Zuleyha Ozer ◽  
Carikci Sema ◽  
Turgut Kilic ◽  
...  

Sideroxol, a kaurene diterpene, was obtained from the acetone extract of Sideritis stricta plant. The ground-state molecular geometry, vibrational frequencies, and NMR chemical shifts were also investigated by using various density functional theories and Pople basis sets. The computed geometries are in good conformity with the experimental data. The comparison between theory and experiments indicates that B3LYP and M06 methods with the 6-31G(d) basis set are able to provide satisfactory results for predicting vibrational and NMR properties. There seems to be no significant effect of addition of diffuse and polarization functions in the basis set used herein.

Author(s):  
Rabiu Nuhu Muhammad ◽  
N. M. Mahraz ◽  
A. S Gidado ◽  
A. Musa

Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450023 ◽  
Author(s):  
Reza Ghiasi ◽  
Morteza Zaman Fashami ◽  
Amir Hossein Hakimioun

In this work, the interaction of C 20 with N 2 X 2 ( X = H , F , Cl , Br , Me ) molecules has been explored using the B3LYP, M062x methods and 6-311G(d,p) and 6-311+G(d,p) basis sets. The interaction energies (IEs) obtained with standard method were corrected by basis set superposition error (BSSE) during the geometry optimization for all molecules at the same levels of theory. It was found C 20… N 2 H 2 interaction is stronger than the interaction of other N 2 X 2 ( X = F , Cl , Br , Me ) with C 20. Highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively) levels are illustrated by density of states spectra (DOS). The nucleus-independent chemical shifts (NICSs) confirm that C 20… N 2 X 2 molecules exhibit aromatic characteristics. Geometries obtained from DFT calculations were used to perform NBO analysis. Also, 14 N NQR parameters of the C 20… N 2 X 2 molecules are predicted.


2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


Author(s):  
María G. Andino ◽  
Mariela I. Profeta ◽  
Jorge M. Romero ◽  
Nelly L. Jorge ◽  
Eduardo A. Castro

The 2,4-dichlorophenoxyacetic acid (2,4-D) is applied to and recovered from the leaf surfaces of garden bean and corn plants. This paper examines the theoretical study of the 2,4-D IR and UV spectra as well as the determination of its optimized molecular structure. Theoretical calculations are performed at the density functional theory (DFT) levels. The different structural and electronic effects determining the molecular stability of the conformers are discussed in a comparative fashion. The optimized geometry was calculated via the B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets and the FT-IR spectra was calculated by the density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers show good agreement with the experimental values. A detailed interpretation of the infrared spectra of 2,4-D is reported.


2002 ◽  
Vol 80 (11) ◽  
pp. 1435-1443 ◽  
Author(s):  
J Komulainen ◽  
R S Laitinen ◽  
R J Suontamo

The structures and spectroscopic properties of SenS8–n ring molecules have been studied by the use of ab initio molecular orbital techniques and density functional techniques involving Stuttgart relativistic large core effective core potential approximation with double zeta basis sets for valence orbitals augmented by two polarization functions for both sulfur and selenium. Full geometry optimizations have been carried out for all 30 isomers at the Hartree-Fock level of theory. The optimized geometries and the calculated fundamental vibrations and Raman intensities of the SenS8–n molecules agree closely with experimental information where available. The nuclear magnetic shielding tensor calculations have been carried out by the Gauge-independent atomic orbital method at the DFT level using Becke's three-parameter hybrid functional with Perdew/Wang 91 correlation. The isotropic shielding tensors correlate well with the observed chemical shift data. The calculated chemical shifts provide a definite assignment of the observed 77Se NMR spectroscopic data and can be used in the prediction of the chemical shifts of unknown SenS8–n ring molecules.Key words: selenium sulfides, ab initio, DFT, effective core potentials, geometry optimization, energetics, fundamental vibrations, 77Se chemical shifts.


2013 ◽  
Vol 6 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Peter Poliak ◽  
Adam Vagánek

Abstract In this work, C-H bond dissociation enthalpies (BDE) and vertical ionization potentials (IP) for various hydrocarbons and ketones were calculated using four density functional approaches. Calculated BDEs and IPs were correlated with experimental data. The linearity of the corresponding dependences can be considered very good. Comparing two used functionals, B3LYP C-H BDE values are closer to experimental results than PBE0 values for both used basis sets. The 6-31G* basis set employed with both functionals, gives the C-H BDEs closer to the experimental values than the 6-311++G** basis set. Using the obtained linear dependences BDEexp = f (BDEcalc), the experimental values of C-H BDEs for some structurally related compounds can be estimated solely from calculations. As a descriptor of the C-H BDE, the IPs and 13C NMR chemical shifts have been investigated using data obtained from the B3LYP/6-31G* calculations. There is a slight indication of linear correlation between IPs and C-H BDEs in the sets of simple alkanes and alkenes/ cycloalkenes. However, for cycloalkanes and aliphatic carbonyl compounds, no linear correlation was found. In the case of the 13C NMR chemical shifts, the correlation with C-H BDEs can be found for the sets of alkanes and cycloalkanes, but for the other studied molecules, no trends were detected.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3931 ◽  
Author(s):  
Kacper Rzepiela ◽  
Aneta Buczek ◽  
Teobald Kupka ◽  
Małgorzata A. Broda

We report on the density functional theory (DFT) modelling of structural, energetic and NMR parameters of uracil and its derivatives (5-halogenouracil (5XU), X = F, Cl, Br and I) in vacuum and in water using the polarizable continuum model (PCM) and the solvent model density (SMD) approach. On the basis of the obtained results, we conclude that the intramolecular electrostatic interactions are the main factors governing the stability of the six tautomeric forms of uracil and 5XU. Two indices of aromaticity, the harmonic oscillator model of aromaticity (HOMA), satisfying the geometric criterion, and the nuclear independent chemical shift (NICS), were applied to evaluate the aromaticity of uracil and its derivatives in the gas phase and water. The values of these parameters showed that the most stable tautomer is the least aromatic. A good performance of newly designed xOPBE density functional in combination with both large aug-cc-pVQZ and small STO(1M)−3G basis sets for predicting chemical shifts of uracil and 5-fluorouracil in vacuum and water was observed. As a practical alternative for calculating the chemical shifts of challenging heterocyclic compounds, we also propose B3LYP calculations with small STO(1M)−3G basis set. The indirect spin–spin coupling constants predicted by B3LYP/aug-cc-pVQZ(mixed) method reproduce the experimental data for uracil and 5-fluorouracil well.


2013 ◽  
Vol 634-638 ◽  
pp. 2537-2540
Author(s):  
Xiao Jun Li

Structure, electronic property, aromaticity and vibrational frequency of medium-sized Au-doped germanium clusters were systematically explored using the density-functional theory (DFT) in conjunction with the LanL2DZ basis set. Our results show that the endohedrally Au-doped cagelike structures are energetically preferred. The p- and d-states in endohedral Au atom mainly contribute to the chemical bonding at around −6.5 and −10.6 eV for the AuGe10 and AuGe12 clusters. Moreover, the cage aromaticity appears to be an important determination of the electronic stability of the two clusters, reflected by negative nucleus-independent chemical shifts (NICS) values. The theoretical work will be useful and helpful for the understanding in the further application, i.e., cluster-assembled optoelectronic nanomaterials.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


Sign in / Sign up

Export Citation Format

Share Document