Chelating polymers. I. The synthesis and acid dissociation behavior of several N-(p-vinylbenzenesulfonyl)-substituted diaminopolyacetic acid monomers, monomeric analogues, and related intermediates

1970 ◽  
Vol 48 (1) ◽  
pp. 163-175 ◽  
Author(s):  
R. M. Genik-Sas-Berezowsky ◽  
I. H. Spinner

Two new chelating monomers, N-(p-vinylbenzenesulfonyl)1,2-diaminoethane-N′,N′-diacetic (SS-EDDA) and -N,N′,N′-triacetic (SS-ED3A) acids, as well as several monomeric analogues and related intermediates have been prepared. In addition, 2-oxo-1-piperazine acetic (S-KP), 3-oxo-1-piperazine acetic (U-KP), and 2-oxo-1,4-piperazine diacetic (3-KP) acids have been synthesized and the interconvertibility between these cyclic amides and their unsubstituted linear amino acid analogues, ethylene-diamine-N,N′-diacetic (S-EDDA), -N,N-diacetic (U-EDDA), and -N,N,N′-triacetic (ED3A) acids respectively, was demonstrated.The acid dissociation constants of the various amino acids were determined potentiometrically at 25° and μ = 0.1 M(KNO3) and the results were compared with the hydrogen ion affinities of related compounds. Dissociation schemes were proposed for all the compounds based on these results. Rationalizations of the linear amino acid and the cyclic amide dissociation constants were made in terms of the effects of cyclization and the inductive effects of neighboring groups. These rationalizations were found to be helpful in clarifying the dissociation schemes previously proposed for several of the linear amino acids.

1961 ◽  
Vol 39 (11) ◽  
pp. 1717-1735 ◽  
Author(s):  
P. G. Scholefield

The cumulative entry of amino acids into Ehrlich ascites carcinoma cells is due to the presence of active transport systems, each with its own specific range of substrates. Several amino acids and amino acid analogues may have an affinity for the same transport system and thus may inhibit transport of other amino acids by acting as competitive inhibitors or competitive substrates. Loss of methionine from ascites cells takes place by a diffusion process which obeys Fick's law. Leucine accumulation by ascites cells is small and is increased on addition of certain other amino acids. The increase is not due to inhibition of leucine oxidation as increase in the rate of production of radioactive carbon dioxide from labeled leucine also occurs. Kinetic aspects of these results are discussed.


Development ◽  
1958 ◽  
Vol 6 (2) ◽  
pp. 262-269
Author(s):  
Phyllis W. Schultz ◽  
Heinz Herrmann

Amino acid analogues have been observed to give rise to abnormal forms of development of chick and amphibian embryos (Herrmann, 1953; Rothfels, 1954; Waddington & Sirlin, 1954; Feldman & Waddington, 1955; Herrmann, Rothfels-Konigsberg, & Curry, 1955). Assuming that these disturbances may be due to interference with the utilization of amino acids for protein formation, we have attempted an analysis of this effect by comparison of the protein contents and of the uptake of glycine into the proteins of chick embryo explants in the presence and absence of amino acid analogues. The results of such experiments are reported in this paper. The chick embryos used for explanation, the explantation technique, and the determination of total protein glycine and of tracer glycine were essentially the same as described previously (Herrmann & Schultz, 1958). The embryos were explanted at the 11–13 somite stage on to the surface of an agar gel containing egg extract as nutrient medium following the procedure given by Spratt (1947) as modified by Rothfels (1954).


1968 ◽  
Vol 46 (8) ◽  
pp. 797-806 ◽  
Author(s):  
N. Rosa ◽  
A. C. Neish

Shoots of barley seedlings when fed D-phenylalanine convert the amino acid to N-malonylphenylalanine. Some N-acetylphenylalanine is obtained at the same time but this may be an artifact of the isolation procedure since it is readily formed by decarboxylation of the malonylphenylalanine. Feeding experiments with the D- and L-isomers of phenylalanine, valine, leucine, isoleucine, tyrosine, tryptophan, alanine, and glutamic acid showed that barley shoots form the malonyl derivative from all the D-isomers whereas little, if any, is formed from the L-isomers. Similar experiments with phenylalanine and leucine isomers, using seven different plant species, showed that the ability to conjugate the D-isomers (but not the L-isomers) was found in all of the plants tested. It was also observed that the ether-soluble acidic conjugates of a variety of amino acids, possibly malonyl derivatives, occur widely throughout the plant kingdom.


1977 ◽  
Vol 163 (1) ◽  
pp. 31-38 ◽  
Author(s):  
B M Austen ◽  
R D Marshall

Glycopeptides containing mainly four amino acid residues in the sequence Asn-Leu-Thr-Ser, with small amounts of additional amino acid residues, were isolated from enzymic hydrolysates of hen's-egg albumin. Heterogeneity of the carbohydrate moiety was confirmed. Acid-base titrations showed that the alpha-amino group has a pKa value of 6.43 at 25 degrees C. The standard free engery and entropy changes associated with the ionization at 25 degrees C were 37.2kJ-mol-1 and -0.014kJ-mol-1- K-1 respectively. The complications arising in the interpretation of titration curves of the glycopeptides, which are heterogeneous with respect to the peptide chain, were considered and discussed in the light of the earlier suggestion that the titration curve of the glycopeptide might be interpreted as being due in part to a structure in which the hydroxyl group of the threonine residue is hydrogen-bonded to the beta-aspartamido oxygen atom [Neuberger & Marshall (1968) in Symposium on Foods - Carbohydrates and their Roles (Schultz, H.W., Cain, R.F. & Wrolstad, R.W., eds.), pp. 115-132, Avi Publishing Co., Westport, CT]. It is concluded that either the glycopeptides do not contain a hydrogen bond of that type, or, if they do, that it cannot be recognized by acid-base-titration studies.


1985 ◽  
Vol 115 (9) ◽  
pp. 1180-1195 ◽  
Author(s):  
Jean K. Tews ◽  
Alfred E. Harper

Sign in / Sign up

Export Citation Format

Share Document