Deuterium and hydrogen sulfides: vapor pressures, molar volumes, and thermodynamic properties

1970 ◽  
Vol 48 (5) ◽  
pp. 764-775 ◽  
Author(s):  
E. C. W. Clarke ◽  
D. N. Glew

An apparatus is described in which deuterium and hydrogen sulfides have been prepared by the hydrolysis of aluminum sulfide. Liquid densities have been determined at −79 °C and give the molar volumes 34.811 ± 0.003 cm3 for deuterium sulfide and 34.711 ± 0.003 for hydrogen sulfide. Vapor pressures of deuterium and hydrogen sulfides have been determined at −78 °C in a quartz–metal apparatus, and in the range −30 to +30 °C in a stainless steel apparatus. Equations are derived for the deuterium and hydrogen sulfide vapor pressures and for their ratio. An isotopic vapor pressure cross-over point is found at −48 °C, above which deuterium sulfide is more volatile than hydrogen sulfide. Gas and liquid molar volumes and enthalpy changes are evaluated for liquid vaporization at saturation. The deuterium and hydrogen sulfide vaporization standard thermodynamic function changes and their errors, together with the isotopic differences for these functions and their errors, are tabulated between −80 and +50°C.

1973 ◽  
Vol 51 (24) ◽  
pp. 4140-4144 ◽  
Author(s):  
S. C. Anand ◽  
J.-P. E. Grolier ◽  
Osamu Kiyohara ◽  
G. C. Benson

Excess enthalpies, excess volumes, and total vapor pressures were measured for cyclopentanol + p-dioxane mixtures at 25 °C. The method of Barker was used to calculate vapour–liquid equilibria and excess Gibbs free energies from the vapor pressure results. A comparison with results (from the literature) for the systems cyclohexane + cyclopentanol and cyclohexane + p-dioxane indicates that the excess thermodynamic properties of cyclopentanol + p-dioxane mixtures arise primarily from the disruption of the structure of the p-dioxane solvent.


2021 ◽  
Vol 66 (4) ◽  
pp. 1709-1716
Author(s):  
Greta Bikelytė ◽  
Martin A. C. Härtel ◽  
Marcel Holler ◽  
Andreas Neuer ◽  
Thomas M. Klapötke

1957 ◽  
Vol 106 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Stephen G. Sydoriak ◽  
Thomas R. Roberts

1964 ◽  
Vol 37 (1) ◽  
pp. 210-220 ◽  
Author(s):  
R. B. Spacht ◽  
W. S. Hollingshead ◽  
H. L. Bullard ◽  
D. C. Wills

Abstract Comparable volatility data are presented for three phenolic and five aromatic amine compounds. Vapor pressure curves for the materials are given along with the vapor pressure equations derived from these curves. The equations are used to calculate temperatures at which the eight compounds would have equal vapor pressure. Vapor pressures of each material are calculated at specified temperatures. Data are given for several methods of determining actual losses of antioxidants at several different temperatures and at several different airflows. Surface effects are also studied. In general, all methods give the same relative rating of the eight materials, but quantitative data vary considerably with the method used.


Sign in / Sign up

Export Citation Format

Share Document