Thermodynamic Properties of Aqueous Organic Solutes in Relation to Their Structure. Part I. Free Energy of Transfer from H2O to D2O for a Series of Isomeric Ketones

1973 ◽  
Vol 51 (18) ◽  
pp. 3051-3061 ◽  
Author(s):  
Carmel Jolicoeur ◽  
Ghislain Lacroix

The solubilities of 18 decanones have been measured in H2O and D2O at 25 °C from their u.v. absorption spectra. The data were used to calculate ΔGt0, the standard free energy of transfer of these solutes from H2O to D2O ΔGt0 was found negative for the saturated ketones, but positive for most of the unsaturated and polycyclic isomers. A rough correlation was observed between ΔGt0 and the degree of branching in the hydrocarbon chains of the ketones: ΔGt0 increases with the degree of branching. From the temperature dependence of ΔGt0 obtained at 10, 25, and 40 °C, heats of transfer ΔHt0 were determined for typical ketones, namely 2-decanone and adamantanone. ΔHt0 was found as −2.1 kcal mol−1 for 2-decanone and ~0 ± 0.5 kcal mol−1 for adamantanone.The results are discussed in terms of two main contributions: (1) an isotope effect in the free energy of cavity formation and (2) perturbation of solvent structure by the solutes, differing in H2O and D2O. Using the scaled-particle theory to evaluate the former, the variations in the observed ΔGt0 are assigned to the structural part of ΔGt0.

1977 ◽  
Vol 55 (4) ◽  
pp. 682-685 ◽  
Author(s):  
Claude Treiner

The tetraphenylboron extrathermodynamic assumption is one of the methods most often used for the evaluation of single ion standard thermodynamic functions of transfer between two solvents. We show in this article that the scaled-particle theory may be useful for discriminating among those solvents for which this extrathermodynamic assumption may be questionable because of strong solute–solvent interactions. Although no general rule is proposed, the tetraphenylboron assumption seems valid in the case of the free energy of transfer between water and solvents like methanol, ethanol, acetonitrile, and formamide; it should not be used in the case of the transfer to solvents like propylene carbonate, dimethylsulfoxide or sulfolane. The scaled-particle theory may also be used to predict within 20% the standard free energy of transfer of the tetraphenylboron ion between water and aqueous mixed solvents; examples are given for water–methanol and water–ethanol mixtures.


1979 ◽  
Vol 57 (15) ◽  
pp. 2004-2009 ◽  
Author(s):  
Michael H. Abraham ◽  
Asadollah Nasehzadeh

Free energies of transfer of Ph4C from acetonitrile to 20 other solvents have been calculated from literature data. The contribution of the cavity term to the total free energy has been obtained from scaled-particle theory and Sinanoglu–Reisse–Moura Ramos theory. It is shown that there is little connection between the cavity term and the total free energy of transfer, and that there must be, in general, a large interaction term. If the latter is important for transfer of Ph4C, we argue that it must also be important for transfer of the ions Ph4As+ and Ph4B−. Previous suggestions that the interaction term is zero for transfer of these two ions are thus seen to be unreasonable. We also show, for six solvents, that the interaction term for Ph4C is very large in terms of enthalpy and entropy, and that scaled-particle theory seems not to apply to transfers of Ph4C between pure organic solvents.The free energy, enthalpy, and entropy of transfer of Ph4As+ = Ph4B− have been calculated by dividing the total transfer values into neutral and electrostatic contributions; reasonable agreement is obtained between calculated and observed values.


1982 ◽  
Vol 60 (11) ◽  
pp. 1317-1326 ◽  
Author(s):  
Robert Aveyard

A simple approach is developed for the salting-out of nonpolar molecules by strongly solvated salts. The standard free energy of transfer of solute from pure solvent to salt solution, and hence the salting coefficient, k, is calculated in terms of the surface tension increment caused by the addition of salt to the solvent. In its simplest form the method gives k in terms of the molar volumes of solvent and solute, and the osmotic coefficient of the salt solution. It is more successful in the prediction of k than the McDevit and Long theory, and it also has advantages over the more complex scaled particle theory of salt effects. In addition to a range of nonpolar solutes, the salt effects on some alcohols are also considered but application to polar solutes generally requires a knowledge of experimentally determined surface tension increments which are not widely available. The correct order of magnitude for the temperature coefficient of k at room temperature for some alkanes and H2 in water is given, although minima in k as a function of temperature, which have sometimes been observed, are not reproduced.


1971 ◽  
Vol 25 ◽  
pp. 361-363 ◽  
Author(s):  
Pentti Salomaa ◽  
Marja Mattsén ◽  
Hans Sievertsson ◽  
Inger Skånberg ◽  
Karl-Gustav Svensson ◽  
...  

Author(s):  
E. A. Lissi ◽  
E. B. Abuin

The partition of several n-alkanols, from methanol to n-nonanol, between n-hexane and water and between n-hexane and water containing 20 % (w/v) urea has been measured at temperatures ranging from 0 °C to 60 °C. The standard free energy of transfer from water to the urea-containing solution decreases with the length of the alkyl chain, being positive for the small alcohols and negative for the higher alkanols. The same tendency is observed upon all the temperature range considered. On the other hand, the standard entropy of transfer from water to the urea-containing solution increases with the length of the alkyl chain of the alkanol. These results are compatible with a simple description of the urea effect in terms of increasing the entropy of dissolution of the hydrophobic alkyl chain in the aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document