Gas Phase Solvation of the Ammonium Ion by NH3 and H2O and Stabilities of Mixed Clusters NH4+ (NH3)n(H2O)w

1973 ◽  
Vol 51 (19) ◽  
pp. 3242-3249 ◽  
Author(s):  
J. D. Payzant ◽  
A. J. Cunningham ◽  
P. Kebarle

The gas phase equilibria[Formula: see text]and those leading to mixed clusters like[Formula: see text]were measured with a pulsed electron beam high pressure ion source mass spectrometer. The ion source contained pure ammonia or mixtures of ammonia and water vapor at pressures in the Torr range. Determination of the temperature dependence of the equilibrium constants led to the evaluation of ΔG0, ΔH0, and ΔS0 values for the equilibria from n = 1 to 4 and w = 1 to 5. The ΔG0 values for the NH4+(NH3)n equilibria were in good agreement with previous determinations from this laboratory. Fair agreement was observed for the ΔH0 and ΔS0 values. Comparison with the corresponding results for NH4+(H2O)w showed that the ΔHn,n−1 and ΔG0n,n−1 were larger than ΔHw,w−1 and ΔG0w,w−1. The difference was largest for the first step (1,0) and decreased progressively until a reversal with water values becoming larger occurred at the (5,4) step. The stronger hydrogen bonds of NH3 to NH4+ for low ligand numbers is explained by the greater basicity of NH3. As the ionic charge becomes dispersed and more distant stronger interactions are obtained with water which gives stronger H bonds in the absence of positive ionic charge. Breaks in the ΔHn,n−1 values indicate existence of a relatively stable NH4+(NH3)4 symmetric ion. A much smaller and less distinct break is observed with pure water ligands.The mixed ammonia–water clusters show similar effects. The addition of a NH3 molecule to a pure water ligand complex gives the strongest interaction. The addition of H2O to a pure ammonia cluster gives the weakest interaction. The above effect is strongest at lowest ligand numbers. The difference decreases gradually and becomes reversed for more than four ligands.


1973 ◽  
Vol 51 (15) ◽  
pp. 2507-2511 ◽  
Author(s):  
R. Yamdagni ◽  
J. D. Payzant ◽  
P. Kebarle

Determination of the temperature dependence of the equilibrium constants Kn,n−1 for the reactions A −Bn = A −Bn−1 + B where A− equals Cl− and O2− and B is HOH, CH3OH, or CH3CN leads to the corresponding ΔH0n−1, ΔG0n−1,n, and ΔS0n−1,n values. The experimental technique is based on mass spectrometric detection of ions escaping from a high pressure ion source. At n = 1, Cl− is solvated most strongly by methanol, then CH3CN and HOH. At higher n a cross over is observed with water becoming the best solvent. These results are in agreement with the positive transfer enthalpies and free energies for Cl− from the liquid solvents HOH → CH3OH and HOH → CH3CN reported in the literature.O2− is solvated more strongly than Cl− appearing thus as an ion of "size" intermediate between Cl− and F− Again CH3OH gives the highest interaction for n = 1, however for n > 1 water gives stronger interactions.



1982 ◽  
Vol 60 (18) ◽  
pp. 2325-2331 ◽  
Author(s):  
D. K. Sen Sharma ◽  
S. Ikuta ◽  
P. Kebarle

The kinetics and equilibria of the gas phase reaction [1] tert-C4H9+ + C6H6 = tert-C4H9C6H6+ were studied with a high ion source pressure pulsed electron beam mass spectrometer. Equilibria [1] could be observed in the temperature range 285–325 K. van't Hoff plots of the equilibrium constants led to [Formula: see text] and [Formula: see text]. The rate constants at 305 K were klf = 1.5 × 10−28 molecules−2 cm6 s−1 and klr = 2.9 × 10−1 molecules−1 cm3 s−1. tert-C4H9C6H6+ dissociates easily via [lr] not only because of the low dissociation energy [Formula: see text] but also because of the unusually favorable entropy [Formula: see text]. The occurrence of transalkylation reactions: tert-C4H9C6H6+ + alkylbenzene = tert-C4H9 alkylbenzene+ + benzene, was discovered in the present work.



1981 ◽  
Vol 59 (12) ◽  
pp. 1779-1786 ◽  
Author(s):  
John A. Stone ◽  
Dena E. Splinter

A pulsed electron beam, high pressure mass spectrometer has been used to determine equilibrium constants for the exchange of CH3Hg+ between bases; [Formula: see text] A series of aromatic, hydrocarbon bases has been studied at 417 K and several nitrogen bases have been studied at 580 K. There is a good linear correlation between differences in CH3Hg+ affinity (ΔG0) and H+ affinity for bases in each series. The single sulfur base examined ((C3H7)2S) shows anomalously high relative affinity for CH3Hg+ compared with H+ while two oxygen bases (CH3COOCH3 and C6H5NO2) show lesser relative affinity. These results are in qualitative agreement with the hard–soft acid base theory. ΔH0 and ΔS0 values have been obtained from Arrhenius plots. For a pair of aromatic bases (toluene–ethylbenzene) ΔH0 is of the same magnitude as that for H+ and ΔS0 may be calculated using partition functions for translation and external rotation. For toluene/methylacetate the difference in binding energy is much greater for H+ than for CH3Hg+ and a similar calculation of ΔS0 gives a result not consistent with the experimental value.



1974 ◽  
Vol 52 (5) ◽  
pp. 861-863 ◽  
Author(s):  
R. Yamdagni ◽  
P. Kebarle

Measurements of the proton transfer equilibria: A1− + A2H = A2− with a pulsed electron beam high pressure mass spectrometer were extended to α, β, γ chlorosubstituted aliphatic acids. The equilibrium constants were used to evaluate ΔG0 for the proton transfer reactions. Assuming ΔG ≈ ΔH and using standard acids AH for which the difference between the bond dissociation energy D(A—H) and the electron affinity of A, EA(A) was known one could evaluate the corresponding difference for the newly measured acids and place them on an absolute acidity scale. The gas phase acidity was observed to increase in the order: acetic, propionic, butyric, γ-Cl butyric, β-Cl butyric, β-Cl propionic, α-Cl butyric, α-Cl propionic, α-Cl acetic. The gas phase acidities are compared with those observed in aqueous solution. The effects of the Cl substituent parallel those in solution but are much larger. The attenuation occurring in solution is attributed to weaker hydrogen bonding of the chloro stabilized acid anions to water molecules.



1979 ◽  
Vol 57 (16) ◽  
pp. 2159-2166 ◽  
Author(s):  
K. Hiraoka ◽  
P. P. S. Saluja ◽  
P. Kebarle

The equilibria Bn−1H+ + B = BnH+ for B = N2, CO, and O2 were measured with a pulsed electron beam high ion source pressure mass spectrometer. Equilibria up to n = 7 could be observed. van't Hoff plots of the equilibrium constants lead to ΔGn−1,n0, ΔHn−1,n0, and ΔSn−1,n0. While the proton affinities increase in the order O2 < N2 < CO, the stabilities of the B2H+ towards dissociation to BH+ + B increase in the reverse order, i.e. CO < N2 < O2. The stabilities towards dissociation of B for BnH+ where n > 2 are much lower for all three compounds; however for N2 and CO the stability decreases only very slowly from n = 3 to n = 6, then there is a large fall off for n = 7. The (O2)nH+ clusters show large decrease of stabilities as n increases. The BnH+ (for n > 3) of CO are more stable than those of N2 or O2. The above experimental results can be partially explained with the help of results from molecular orbital STO-3G calculations for B, BH+, and B2H+ and general considerations. BH+ and B2H+ for CO and N2 are found to be linear while those for O2 are bent. The most stable O2H+ is a triplet, while (O2)2H+ is a quintuplet.



2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>



1982 ◽  
Vol 60 (6) ◽  
pp. 730-734 ◽  
Author(s):  
Russell J. Boyd ◽  
Jeffrey P. Szabo

Abinitio molecular orbital calculations are reported for several cyclic and acyclic sulfones. The geometries of XSO2Y, where X, Y = H, F, or CH3 are optimized at the STO-3G* level. Similar calculations are reported for the smallest cyclic sulfone, thiirane-1,1 -dioxide, as well as the corresponding sulfoxide, thiirane-1-oxide, and the parent sulfide, thiirane. Where comparison with experiment is possible, the agreement is satisfactory. In order to consider the possibility of substantial differences between axial and equatorial S—O bonds in the gas phase, as observed in the crystal structure of 5H,8H-dibenzo[d,f][1,2]-dithiocin-1,1-dioxide, STO-3G* calculations are reported for a six-membered ring, thiane-1,1-dioxide, and a model eight-membered ring. Limited geometry optimization of the axial and equatorial S—O bonds in the chair conformations of the six- and eight-membered rings leads to bond lengths of 1.46 Å with the difference being less than 0.01 Å.



1981 ◽  
Vol 59 (15) ◽  
pp. 2412-2416 ◽  
Author(s):  
John A. Stone ◽  
Margaret S. Lin ◽  
Jeffrey Varah

The reactivity of the dimethylchloronium ion with a series of aromatic hydrocarbons has been studied in a high pressure mass spectrometer ion source using the technique of reactant ion monitoring. Benzene is unreactive but all others, from toluene to mesitylene, react by CH3+ transfer to yield σ-bonded complexes. The relative rate of reaction increases with increasing exothermicity in line with current theories of nucleophilic displacement reactions.



1982 ◽  
Vol 53 (5) ◽  
pp. 1116-1124 ◽  
Author(s):  
R. P. Cole ◽  
P. C. Sukanek ◽  
J. B. Wittenberg ◽  
B. A. Wittenberg

The effect of myoglobin on oxygen consumption and ATP production by isolated rat skeletal muscle mitochondria was studied under steady-state conditions of oxygen supply. A method is presented for the determination of steady-state oxygen consumption in the presence of oxygen-binding proteins. Oxygen consumed in suspensions of mitochondria was replenished continuously by transfer from a flowing gas phase. Liquid-phase oxygen pressure was measured with an oxygen electrode; the gas-phase oxygen concentration was held constant at a series of fixed values. Oxygen consumption was determined from the characteristic response time of the system and the difference in the steady-state gas- and liquid-phase oxygen concentrations. ATP production was determined from the generation of glucose 6-phosphate in the presence of hexokinase. During steady-state mitochondrial oxygen consumption, the oxygen pressure in the liquid phase is enhanced when myoglobin is present. Functional myoglobin present in the solution had no effect on the relation of mitochondrial respiration and ATP production to liquid-phase oxygen pressure. Myoglobin functions in this system to enhance the flux of oxygen into the myoglobin-containing phase. Myoglobin may function in a similar fashion in muscle by increasing oxygen flux into myocytes.



2017 ◽  
Vol 4 ◽  
pp. e004 ◽  
Author(s):  
Christine Scoffoni ◽  
Grace John ◽  
Herve Cochard ◽  
Lawren Sack

Replacing ultra-pure water solution with ion solution closer to the composition of natural xylem sap increases stem hydraulic conductance by up to 58%, likely due to changes in electroviscosity in the pit membrane pores. This effect has been proposed to contribute to the control of plant hydraulic and stomatal conductance and potentially to influence on carbon balance during dehydration. However, this effect has never been directly tested for leaf xylem, which constitutes a major bottleneck in the whole plant. We tested for an ion-mediated increase in the hydraulic conductance of the leaf xylem (Kx) for seven species diverse in phylogeny and drought tolerance. Across species, no significant changes in Kx were observed between 0 and 15 mM KCl. We further tested for an effect of ion solution during measurements of Kx vulnerability to dehydration in Quercus agrifolia and found no significant impact. These results for leaf xylem contrast with the often strong ion effect reported for stems, and we suggest several hypotheses to account for the difference, relating to the structure of xylem conduits across vein orders, and the ultrastructure of leaf xylem pores. A negligible ion response in leaves would weaken xylem sap ion-mediated control of plant hydraulic conductance, facilitating modeling of whole plant hydraulic behavior and its influence on productivity.



Sign in / Sign up

Export Citation Format

Share Document