The Kinetics of Isotope Effects in a Model Solvolysis System Involving One Optically Active Ion Pair Intermediate

1974 ◽  
Vol 52 (10) ◽  
pp. 1937-1941 ◽  
Author(s):  
P. Christian Vogel

The derivation of the observed first-order rate constants from the "exact" integrated rate equations for the kinetic scheme of reaction 1 is presented. It is shown that the solvolytic exponential first-order rate constant is a special case of the polarimetric rate constant and that the optical activity of the product is determined by a multiplicative ratio of rate constants for the optically important reactions of the ion pair intermediate. A form of the integrated first-order polarimetric rate equation with a linearly independent parameter set is presented. The functions for the first-order rate constants derived using the steady state approximation are special cases of the functions derived from the exact equations, as are the functions for the first-order rate constants for two systems which involve pre-equilibria followed by a slow product forming step. These functions cannot all be derived one from the other. A differential analysis of observed isotope effects as functions of isotope effects on the rate constants for reactions involving the intermediates is presented.

1985 ◽  
Vol 63 (10) ◽  
pp. 2673-2678 ◽  
Author(s):  
Robert A. McClelland ◽  
Claude Moreau

Hydrolysis kinetics are reported for four spiro ortho esters: 3,4-dihydro-6-methoxy-1H-2-benzopyran-1-spiro-2′-1′,3′-dioxolane (13), its 1′,3′-dioxane analog (14), and the 6-unsubstituted versions of each (11 and 12). For comparison, also included are the diethoxy analogs: 1,1-diethoxy-3,4-dihydro-6-methoxy-1H-2-benzopyran (10) and the 6-unsubstituted compound (9). Product analysis implicates an initial opening of the dioxolane or dioxane ring in the spiro ortho esters, as expected on the basis of stereoelectronic considerations. The intermediate dialkoxycarbocations can be observed in HCl solutions. A detailed analysis has been carried out for the 6-methoxy systems to provide the rate constants k1, the second-order rate constant for H+-catalyzed formation of the cation from the ortho ester, k2, the first-order rate constant for water addition to the cation, and k−1, the first-order rate constant for ring closing of the cation to reform the ortho ester. The two spiro ortho esters are shown in this analysis to undergo reversible ring opening in their hydrolysis, in that values of k−1, are greater than k2. The differences, however, are not large, k−1/k2 being 1.2 (dioxolane, 13) and 3.8 (dioxane, 14). Comparison with the diethoxy ortho ester also reveals that the ring opening process (k1, rate constants) is inherently more difficult with the dioxolane, although not with the dioxane. An argument involving lone pair orientation is advanced to explain this.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4373
Author(s):  
Hans-Heinrich Limbach ◽  
Simone Baumgärtner ◽  
Roland Franke ◽  
Ferdinand Männle ◽  
Gerd Scherer ◽  
...  

Using dynamic liquid-state NMR spectroscopy a degenerate double proton tautomerism was detected in tetramethyl reductic acid (TMRA) dissolved in toluene-d8 and in CD2Cl2. Similar to vitamin C, TMRA belongs to the class of reductones of biologically important compounds. The tautomerism involves an intramolecular HH transfer that interconverts the peripheric and the central positions of the two OH groups. It is slow in the NMR time scale around 200 K and fast at room temperature. Pseudo-first-order rate constants of the HH transfer and of the HD transfer after suitable deuteration were obtained by line shape analyses. Interestingly, the chemical shifts were found to be temperature dependent carrying information about an equilibrium between a hydrogen bonded dimer and a monomer forming two weak intramolecular hydrogen bonds. The structures of the monomer and the dimer are discussed. The latter may consist of several rapidly interconverting hydrogen-bonded associates. A way was found to obtain the enthalpies and entropies of dissociation, which allowed us to convert the pseudo-first-order rate constants of the reaction mixture into first-order rate constants of the tautomerization of the monomer. Surprisingly, these intrinsic rate constants were the same for toluene-d8 and CD2Cl2, but in the latter solvent more monomer is formed. This finding is attributed to the dipole moment of the TMRA monomer, compensated in the dimer, and to the larger dielectric constant of CD2Cl2. Within the margin of error, the kinetic HH/HD isotope effects were found to be of the order of 3 but independent of temperature. That finding indicates a stepwise HH transfer involving a tunnel mechanism along a double barrier pathway. The Arrhenius curves were described in terms of the Bell–Limbach tunneling model.


1992 ◽  
Vol 70 (3) ◽  
pp. 935-942 ◽  
Author(s):  
Wlodzimierz Galezowski ◽  
Arnold Jarczewski

The conductometric study of the products of the proton transfer reactions of C-acids (nitriles, nitroalkanes, and 2,4,6-trinitrotoluene) with the strong amine bases (1,1,3,3-tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,8-bis(dimethylamino)naphthalene (DMAN), and piperidine) in acetonitrile shows their large degree of dissociation into free ions. The dissociation constant values have been estimated at 25 °C to be larger than 1 × 10−4 M. This weakens the formalism commonly accepted in spectrophotometric kinetic studies of these systems of reactions, based on the assumption that the product is an ion pair. Spectrophotometric equilibrium and kinetic measurements provided evidence that reverse reaction is a second-order process (pseudo-first order because cation concentration is controlled by side reactions). The influence of the common cation (TMGH+) on the equilibria of the proton abstraction from 2-methyl-1-(4-nitrophenyl)-1-nitropropane and 4-nitrophenylcyanomethane with TMG base in acetonitrile at 25 °C was examined and was found to be compatible with the assumption of large dissociation of the reaction product for free ions. "Equilibrium constants" estimated by the Benesi and Hildebrand method (which assumes an ion-pair product) decreased with increasing concentration of added TMGH+ cation, but these "equilibrium constants" multiplied by [TMGH+] are constant. The observed pseudo-first-order rate constants of the proton transfer reaction, measured at large excess of the base over C-acid, grow with the cation concentration due to the increase of the backward reaction rate. The concentration of added common cation shows a negligible influence on the observed rate constants of deuteron transfer reaction. Thus, as a result of side reactions, in which extra amounts of cation are formed, some second-order rate constants [Formula: see text] and also kinetic isotope effects (KIEs) [Formula: see text] that have been measured in acetonitrile can be substantially overestimated. Keywords: ion-pair dissociation, proton transfer reactions, kinetic isotope effects.


1962 ◽  
Vol 40 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
S. J. Price

The pyrolysis of toluene has been studied in a flow system from 913 to 1143 °K. First-order rate constants are independent of the toluene concentration but decrease approximately 9% when the contact time is reduced from 1.0 to 0.41 second. Increasing the contact time from 1.0 second to 2.07 seconds does not affect the rate constant. The overall rate has been resolved into homogeneous and heterogeneous components. It is suggested that the activation energy of the homogeneous process, 85 kcal/mole, may be associated with D(C6H5CH2—H).


1970 ◽  
Vol 23 (4) ◽  
pp. 707 ◽  
Author(s):  
SC Chan ◽  
TL Cheung

Salts of one isomeric form of the chlorocycloalkylaminebis(ethylenediamine)cobalt(111) series of cations have been prepared and characterized. They are tentatively assigned a cis configuration on the basis of visible absorption spectroscopy. The first-order rate constants for the solvolytic aquation of these cations have been determined at 50.5�, and the results suggest the presence of steric acceleration. The second-order rate constants for the base hydrolysis of these cations have also been determined at 0� and ionic strength of 0.1M. These results are discussed in terms of the conjugate-base/ion-pair mechanistic spectrum postulated previously.


1977 ◽  
Vol 167 (3) ◽  
pp. 859-862 ◽  
Author(s):  
K Brocklehurst ◽  
H B F Dixon

1. Reactions of enzymes with site-specific reagents may involve intermediate adsorptive complexes formed by parallel reactions in several protonic states. Accordingly, a profile of the apparent second-order rate constant for the modification reaction (Kobs., the observed rate constant under conditions where the reagent concentration is low enough for the reaction to be first-order in reagent) against pH can, in general, reflect free-reactant-state molecular pKa values only if a quasi-equilibrium condition exists around the reactive protonic state (EHR) of the adsorptive complex. 2. Usually the condition for quasi-equilibrium is expressed in terms of the rate constants around EHR: (formula: see text) i.e. k mod. less than k-2. This often cannot be assessed directly, particularly if it is not possible to determine kmod. 3. It is shown that kmod. must be much less than k-2, however, if kobs. (the pH-independent value of kobs.) less than k+2. 4. Since probable values of k+2 greater than 10(6)M-1.S-1 and since values of kobs. for many modification reactions less than 10(6)M-1.S-1, the equilibrium assumption should be valid, and kinetic study of such reactions should provide reactant-state pKa values. 5. This may not apply to catalyses, because for them the value of kcat./Km may exceed 5 X 10(5)M-1.S-1. 6. The conditions under which the formation of an intermediate complex by parallel pathways may come to quasi-equilibrium are discussed in the Appendix.


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


1987 ◽  
Author(s):  
Moideen P Jamaluddin

Platelet aggregation kinetics, according to the particle collision theory, generally assumed to apply, ought to conform to a second order type of rate law. But published data on the time-course of ADP-induced single platelet recruitment into aggregates were found not to do so and to lead to abnormal second order rate constants much larger than even their theoretical upper bounds. The data were, instead, found to fit a first order type of rate law rather well with rate constants in the range of 0.04 - 0.27 s-1. These results were confirmed in our laboratory employing gelfiltered calf platelets. Thus a mechanism much more complex than hithertofore recognized, is operative. The following kinetic scheme was formulated on the basis of information gleaned from the literature.where P is the nonaggregable, discoid platelet, A the agonist, P* an aggregable platelet form with membranous protrusions, and P** another aggregable platelet form with pseudopods. Taking into account the relative magnitudes of the k*s and assuming aggregation to be driven by hydrophobic interaction between complementary surfaces of P* and P** species, a rate equation was derived for aggregation. The kinetic scheme and the rate equation could account for the apparent first order rate law and other empirical observations in the literature.


Sign in / Sign up

Export Citation Format

Share Document