SODIUM CHELATES OF ETHYLENEDIAMINETETRAACETIC ACID

1963 ◽  
Vol 41 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Vladimir Palaty

The stability constant of the sodium chelate of EDTA was determined by means of a sodium-sensitive glass electrode. It appears that a hydrogen chelate of the formula NaHY2− is formed in the neutral solution of EDTA, but is very unstable. The stability constants, pKNaY = −2.61 and pKNaHY = 0.03, are comparable to the value obtained by Schwarzenbach and Ackermann under different experimental conditions by a less sensitive method.

1992 ◽  
Vol 38 (4) ◽  
pp. 562-565 ◽  
Author(s):  
M A Kline ◽  
C Orvig

Abstract The stability constants for the Fe(III) complexes of the orally active iron decorporation drug L1 (3-hydroxy-1,2-dimethyl-4-pyridinone) have been determined by potentiometric titration [glass electrode, 25.0 degrees C, mu = 0.15 mol/L (isotonic) NaCl]. A simple computer model of blood plasma (citrate 100 mumol/L, transferrin 37 mumol/L) has been used to compare the Fe(III) binding efficacies in blood of L1 and the clinically used intravenously administered chelating agent deferoxamine.


1987 ◽  
Vol 33 (3) ◽  
pp. 405-407 ◽  
Author(s):  
R B Martin ◽  
J Savory ◽  
S Brown ◽  
R L Bertholf ◽  
M R Wills

Abstract An understanding of Al3+-induced diseases requires identification of the blood carrier of Al3+ to the tissues where Al3+ exerts a toxic action. Quantitative studies demonstrate that the protein transferrin (iron-free) is the strongest Al3+ binder in blood plasma. Under plasma conditions of pH 7.4 and [HCO3-]27 mmol/L, the successive stability constant values for Al3+ binding to transferrin are log K1 = 12.9 and log K2 = 12.3. When the concentration of total Al3+ in plasma is 1 mumol/L, the free Al3+ concentration permitted by transferrin is 10(-14.6) mol/L, less than that allowed by insoluble Al(OH)3, by Al(OH)2H2PO4, or by complexing with citrate. Thus transferrin is the ultimate carrier of Al3+ in the blood. We also used intensity changes produced by metal ion binding to determine the stability constants for Fe3+ binding to transferrin: log K1 = 22.7 and log K2 = 22.1. These constants agree closely with a revision of the reported values obtained by equilibrium dialysis. By comparison with Fe3+ binding, the Al3+ stability constants are weaker than expected; this suggests that the significantly smaller Al3+ ions cannot coordinate to all the transferrin donor atoms available to Fe3+.


1977 ◽  
Vol 55 (14) ◽  
pp. 2613-2619 ◽  
Author(s):  
M. S. El-Ezaby ◽  
M. A. El-Dessouky ◽  
N. M. Shuaib

The interactions of Ni(II) and Co(II) with 2-pyridinecarboxaldehyde have been investigated in aqueous solutions at μ = 0.10 M (KNO3) at 30 °C. The stability constants of different complex equilibria have been determined using potentiometric methods. Spectrophotometric methods were also used in the case of the nickel(II) – 2-pyridinecarboxaldehyde system. It was concluded that nickel(II) and cobalt(II), analogous to copper(II), enhance hyrdation of 2-pyridinecarboxaldehyde prior to deprotonation of one of the geminal hydroxy groups. Complex species of 1:1 as well as 1:2 metal ion to ligand composition exist under the experimental conditions used.


Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1279 ◽  
Author(s):  
S. B. Pandeya ◽  
A. K. Singh

The stability constants for the complexes formed between iron species existing in ambient soil environment and fulvic acids (FA) extracted from organic wastes like sewage sludge, farm yard manure (FYM), poultry manure, and press mud were determined in aqueous media of pH 5·0 and 8·5 by discontinuous spectrocolorimetric titration method. The values of stability constant (log K) of Fe–FA complexes estimated at pH 5·0 were 6·026, 6·212, 6·270, and 6·342 for FYM, sludge, poultry manure, and press mud, respectively. The respective values at pH 8·5 were 6·145, 6·276, 6·350, and 6·940. The order of the values of log K for different preparations of fulvic acids was press mud > poultry manure > sludge > FYM. The functional group contents, their pH of neutralisation, and electrostatic properties of the FA such as pKINT, pKm, and 0·868 nW, were found to be the determining factors for maximum binding ability of FA for metal cations and the stability constant of Fe–FA for different FA preparations. The basic assumptions and the limitations of the discontinuous spectrocolorimetric estimation of stability constants for Fe–FA are discussed.


1989 ◽  
Vol 44 (11) ◽  
pp. 1402-1406 ◽  
Author(s):  
W. Kuhr ◽  
G. Peters ◽  
W. Preetz

By 103Rh NMR spectroscopy the ten compounds of the system [RhCl„Br6_„]3-, n = 0-6 are identified by separate signals. A downfield shift of approximately 160 ppm is observed per substitution of Cl by Br, and the stereoisomers for n = 2, 3, 4 are separated by at least 4 ppm. From the relative intensities of the 103Rh signals in equilibrated solutions, whose total contents of Rh. Cl and Br are known, six individual stability constants are calculated. Their product gives the overall stability constant, indicating [RhBr6]3- to be 36,300 times more stable than [RhCl6]3-. On treatment of [RhBr6]3- with HCl cis/fac isomers are formed stereospecifically, whereas the reaction of [RhCl6]3- with HBr gives trans isomers, n = 2 and 4, containing 20—30% of the cis compounds; only mer-[RhCl3Br3] 3- is obtained pure. The high resolution spectra of [RhCl6]3- and [RhBr6]3- are exhibit five signals each, reflecting the intensity patterns of the most abundant isotopomers within [Rh35Cln37Cl6-n]3-, n = 2-6, and [Rh79Br„81Br6_„]3-, n = 1-5, respectively.


1967 ◽  
Vol 45 (14) ◽  
pp. 1643-1647 ◽  
Author(s):  
P. G. Manning

Stepwise stability constants have been determined for the 1:1 and 1:2 Eu3+:mandelate− and Eu3+:tartronate2− complexes in water. Measurements were made at low ionic strength and the temperature was 25 °C. The solvent-extraction–radiotracer method was used.For the mandelate system at an ionic strength of 0.104, K1 = 5.0 × 102, K2 = 1.58 × 102, and K1:K2 = 3.1. The K1:K2 ratios suggest monodentate ligandcy.The stepwise stability constants for the two stages of tartronate ion association are: K1 = 7.1 ( ± 15%) × 104 and K1K2 = 4.2 ( ± 5%) × 108. The magnitudes of the stability constants suggest that tartronate is a tridentate ligand. The stability constant ratios are discussed with reference to the ratios for piperidinedicarboxylate and iminodiacetate complexes.


2000 ◽  
Vol 663 ◽  
Author(s):  
C. Ekberg ◽  
P. Brown ◽  
J. Comarmond ◽  
Y. Albinsson

ABSTRACTThe stability constants of the hydroxide complexes of zirconium(IV) and uranium(IV) have been measured at 15, 25 and 35°C [in 1.0 mol dm−3 (Na, H)ClO4] using potentiometry. For zirconium(IV), the results indicate the presence of Zr(OH)3+ and the polymeric species Zr3(OH)48+ and Zr4(OH)88+ whereas the results for uranium(IV) indicate the presence of U(OH)3+ and the polymeric species U4(OH)124+. The hydrolysis of both metal ions was studied at three temperatures allowing the determination of ΔH° and ΔS° of reaction for each species. The results were compared with previous results determined for thorium(IV) under the same experimental conditions to ascertain whether thorium should be used as an analogue for other tetravalent metal ions in safety assessment studies of nuclear repositories.


1970 ◽  
Vol 44 (1) ◽  
pp. 1-10
Author(s):  
Nurun Nahar ◽  
Anshaya Ramim ◽  
M Nurul Abser

The speciation of cadmium(II) in ppb level by complexation with ethylenediamine (EN) has been investigated by differential pulse anodic stripping voltammetry (DPASV) using thin mercury film coated glassy carbon electrode (TMFGCE). The overall work has been carried out at constant ionic strength of 0.01 mol dm-3 (NaNO3) at ambient temperature. The pH was kept constant at 8.81 ± 0.10 by the addition of borate buffer. The stability constants of different species of cadmium(II) with ethylenediamine have been calculated from the variation of peak potential and diffusion current of simple and complexed metal ions under the present experimental conditions. The logarithmic values of overall stability constants: log β1, log β2 and log β3 (βi = [CdLi]/[Cd2+][L]i where i = 1, 2 and 3) have been found to be 5.01, 8.9 and 11.1 for CdL, CdL2 and CdL3, respectively (charges were omitted for simplicity). The stability constants of cadmium complexes and hydrolysis constants of cadmium indicate that five different species of cadmium (Cd2+, CdOH+, CdL, CdL2 and CdL3) co-exist at ligand concentrations up to 5×10-4 mole dm-3 under the present experimental conditions. The results obtained by this method is applied to study the cadmium speciation in river water on the basis of competitive ligand exchange equilibrium. Key words: Speciation, Complexation, Aqueous media, DPASV, Mercury film electrode.   doi: 10.3329/bjsir.v44i1.2709 Bangladesh J. Sci. Ind. Res. 44(1), 1-10, 2009


Author(s):  
L. P. Bondareva ◽  
Y. S. Peregudov ◽  
A. V. Astapov

The task of isolating and separating amino acids from aqueous solutions exists in various industries. The traditional method of isolation is ligand exchange chromatography. When choosing a cation for ligand-binding chromatography based on its binding strength with the ion exchanger, often used as a sulfonated polystyrene ion exchanger keeps the copper (II) firmly enough, and therefore, it is easily replaced by other cations. Chelating ion exchangers charge cations of copper (II), which hold these ions firmly enough. In this case, separating a mixture of substances, it is due to differences in the constants of complexation agents and complexes distribution coefficients. The study of the interaction of amino acids with the aliphatic carboxylic acid, the exchange of phosphoric acid cations and the amino carboxylic and amino phosphonic polyampholytes has shown a significant effect of the pH of the medium on the nature of the sorption equilibria. Under certain conditions, in the phase of the ion exchanger in the form of complexing metal cations, the formation of new sorption centers is possible, which occur upon sorption of amino acids in the formation of mixed ligand compounds: the sorbent complex may simultaneously comprise amino acids and attached functional groups of the sorbent as ligands. The influence of the hydrogen index of the medium primarily affects the change in the nature of the formed complex compounds in the sorbent phase and the equilibrium solution and the ratio of their stability constants. If the stability constant of the ion exchanger complex is higher than the stability constant of the compound with a low molecular weight ligand, then the sorbed copper cations interact with incoming methionine ions without breaking the metal – functional group of the ion exchanger coordination bond. If the ratio of stability constants is the opposite, then the predominant elution of copper (II) cations occurs with the formation of complex compounds with an amino acid in an aqueous solution.


1980 ◽  
Vol 58 (12) ◽  
pp. 1253-1257 ◽  
Author(s):  
Mian S. Sun ◽  
Donald K. Harriss ◽  
Vincent R. Magnuson

Activity corrections for ionic equilibria in aqueous solutions at 25 °C and ionic strengths up to 0.5 have been investigated. An empirical formula for activity corrections was generated by statistically fitting stability constant data for approximately 540 complexes, for which both thermodynamic and concentration stability constants were known, to a modified Debye – Hückel relationship. The general formula is[Formula: see text]χ > 0, where Δ log K is the difference in the logarithms of the stability constants at infinite dilution and finite I (I ≤ 0.5), and χ is an even integer dependent only on the stoichiometry and charge of the ions involved. Activity correction formulae for ionic equilibria involving classes of ligands (amino acid, inorganic, amine, and organic acid) also were developed. The general formula predicts stability constant corrections within 0.1 log unit for 87 % of the data used at ionic strength 0.1 and 64 % of the data at ionic strength 0.5. In addition, single ion activity coefficients as a function of ionic strength, 0 < I ≤ 0.5, are presented.


Sign in / Sign up

Export Citation Format

Share Document