Kinetics of the oxidation of ethane by nitric oxide over manganese(III) oxide

1981 ◽  
Vol 59 (14) ◽  
pp. 2232-2238
Author(s):  
R. A. Ross ◽  
C. Fairbridge

The catalytic reaction between ethane and nitric oxide over manganese(III) oxide has been investigated in a continuous flow system from 673 to 573 K at atmospheric pressure. The products of catalysis were nitrogen, carbon dioxide, nitrous oxide, and water. The rate of nitrous oxide formation was constant over this temperature region, while the apparent activation energies for nitrogen and carbon dioxide formation increased from 32 ± 4 and 22 ± 4 kJ mol−1, respectively, at 573 to 613 K, to 78 ± 4 and 63 ± 4 kJ mol−1 between 613 and 673 K. The kinetic results were best described by the rate equation:[Formula: see text]The surface mechanism appears to be complex and has been interpreted by a scheme involving interaction of the reactants in an absorbed layer. Both nitric oxide and ethane are believed to be involved further in subsequent steps. Infrared evidence indicates the possibility of a surface nitrate intermediate consistent with the mechanistic proposal. Scanning electron microscopy and X-ray powder diffraction techniques were used to assess the catalyst structure.


1982 ◽  
Vol 60 (21) ◽  
pp. 2749-2754 ◽  
Author(s):  
Craig Fairbridge ◽  
James R. MacCallum ◽  
Robert A. Ross

The oxygen/ethane and oxygen/1-butene reactions have been investigated in a continuous flow system at atmospheric pressure over a manganese oxide/carbon fibre catalyst. The products of reaction were carbon dioxide and water. Apparent activation energies were 108 ± 4 kJ mol−1for the former reaction from 673 to 573 K, and 81 ± 4 kJ mol−1 for the latter from 573 to 473 K. Kinetic data for both reactions were best described by the rate equation:[Formula: see text]The surface mechanism may be complex and it is proposed that reactants interact as adsorbed species each of which is adsorbed on two surface sites. Both oxygen and the hydrocarbon gas appear to be directly involved in further steps. Scanning electron microscopy, X-ray photoelectron spectroscopy, and low temperature krypton adsorption were used to assess the catalyst structure.



1979 ◽  
Vol 57 (7) ◽  
pp. 718-722
Author(s):  
Bordan W. Krupay ◽  
Robert A. Ross

The catalytic reaction between carbon monoxide and nitrous oxide over chromium(III) oxide has been investigated in a continuous flow system at atmospheric pressure from 525 to 583 K. Two kinetic regions with apparent activation energies of 172 ± 4 kJ mol−1 (525 to 559 K) and 239 ± 4 kJ mol−1 (565 to 583 K) were observed. The rate-controlling step in both regions was associated with the formation of an intermediate carbonate-like species during the consecutive decompositions of two nitrous oxide molecules. In the region of higher apparent activation energy, the presence of polymeric surface chromate groups may influence the reactivity of any carbonate-like intermediate and the subsequent desorption of carbon dioxide thereby leaving a vacant site for nitrous oxide decomposition.



Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5052
Author(s):  
Bartłomiej Rogalewicz ◽  
Agnieszka Czylkowska ◽  
Piotr Anielak ◽  
Paweł Samulkiewicz

Absorbents used in closed and semi-closed circuit environments play a key role in preventing carbon dioxide poisoning. Here we present an analysis of one of the most common carbon dioxide absorbents—soda lime. In the first step, we analyzed the composition of fresh and used samples. For this purpose, volumetric and photometric analyses were introduced. Thermal properties and decomposition patterns were also studied using thermogravimetric and X-ray powder diffraction (PXRD) analyses. We also investigated the kinetics of carbon dioxide absorption under conditions imitating a closed-circuit environment.



1971 ◽  
Vol 17 (2) ◽  
pp. 131-137 ◽  
Author(s):  
S.M. Shahed ◽  
H.K. Newhall


2005 ◽  
Vol 9 (23) ◽  
pp. 1-28 ◽  
Author(s):  
Michael Keller ◽  
Ruth Varner ◽  
Jadson D. Dias ◽  
Hudson Silva ◽  
Patrick Crill ◽  
...  

Abstract Selective logging is an extensive land use in the Brazilian Amazon region. The soil–atmosphere fluxes of nitrous oxide (N2O), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2) are studied on two soil types (clay Oxisol and sandy loam Ultisol) over two years (2000–01) in both undisturbed forest and forest recently logged using reduced impact forest management in the Tapajos National Forest, near Santarem, Para, Brazil. In undisturbed forest, annual soil–atmosphere fluxes of N2O (mean ± standard error) were 7.9 ± 0.7 and 7.0 ± 0.6 ng N cm−2 h−1 for the Oxisol and 1.7 ± 0.1 and 1.6 ± 0.3 ng N cm−2 h−1 for the Ultisol for 2000 and 2001, respectively. The annual fluxes of NO from undisturbed forest soil in 2001 were 9.0 ± 2.8 ng N cm−2 h−1 for the Oxisol and 8.8 ± 5.0 ng N cm−2 h−1 for the Ultisol. Consumption of CH4 from the atmosphere dominated over production on undisturbed forest soils. Fluxes averaged −0.3 ± 0.2 and −0.1 ± 0.9 mg CH4 m−2 day−1 on the Oxisol and −1.0 ± 0.2 and −0.9 ± 0.3 mg CH4 m−2 day−1 on the Ultisol for years 2000 and 2001. For CO2 in 2001, the annual fluxes averaged 3.6 ± 0.4 μmol m−2 s−1 on the Oxisol and 4.9 ± 1.1 μmol m−2 s−1 on the Ultisol. We measured fluxes over one year each from two recently logged forests on the Oxisol in 2000 and on the Ultisol in 2001. Sampling in logged areas was stratified from greatest to least ground disturbance covering log decks, skid trails, tree-fall gaps, and forest matrix. Areas of strong soil compaction, especially the skid trails and logging decks, were prone to significantly greater emissions of N2O, NO, and especially CH4. In the case of CH4, estimated annual emissions from decks reached extremely high rates of 531 ± 419 and 98 ± 41 mg CH4 m−2 day−1, for Oxisol and Ultisol sites, respectively, comparable to wetland emissions in the region. We calculated excess fluxes from logged areas by subtraction of a background forest matrix or undisturbed forest flux and adjusted these fluxes for the proportional area of ground disturbance. Our calculations suggest that selective logging increases emissions of N2O and NO from 30% to 350% depending upon conditions. While undisturbed forest was a CH4 sink, logged forest tended to emit methane at moderate rates. Soil–atmosphere CO2 fluxes were only slightly affected by logging. The regional effects of logging cannot be simply extrapolated based upon one site. We studied sites where reduced impact harvest management was used while in typical conventional logging ground damage is twice as great. Even so, our results indicate that for N2O, NO, and CH4, logging disturbance may be as important for regional budgets of these gases as other extensive land-use changes in the Amazon such as the conversion of forest to cattle pasture.



1983 ◽  
Vol 61 (12) ◽  
pp. 2767-2772 ◽  
Author(s):  
Robert Anderson Ross ◽  
Craig Fairbridge

Reactions of 1-butene with nitric oxide from 623 to 723 K and with oxygen from 433 to 573 K have been studied in a differential flow system over manganese(III) oxide. Nitrous oxide was formed in the reaction of the hydrocarbon with nitric oxide along with products of complete combustion. The apparent activation energies were respectively 69 ± 4, 78 ± 4, and 30 ± 4 kJ mol−1 for nitrogen, carbon dioxide, and nitrous oxide reaction rates. The corresponding pre-exponential factors were 1.72 × 10−1 and 1.16 mol0.5 L−0.5 m2 g−1, and 1.99 × 10−2 mol−0.35 L0.35 m2 g−1. In the reaction with oxygen, apparent activation energies of 183 ± 4, 523 to 503 K, and 88 ± 4 kJ mol−1, 503 to 433 K, were determined with pre-exponential factors 1.74 × 1015 and 2.94 × 105 mol0.3 m−2 g−1. During catalysis the oxide underwent a partial phase change from α to γ in both reactions. Additionally, nitrate species were present on the surface after oxidation with nitric oxide. Kinetic expressions have been derived and mechanisms proposed for both reactions which may occur in emission control systems requiring the removal of NOx and unburned hydrocarbons.







1982 ◽  
Vol 60 (7) ◽  
pp. 893-897 ◽  
Author(s):  
Craig Fairbridge ◽  
Robert Anderson Ross

The kinetics of the nitrous oxide/ethane and oxygen/ethane reactions on manganese(III) oxide have been studied from 573 to 673 K and from 523 to 593 K, respectively. The apparent activation energy for carbon dioxide formation was 130 ± 4 kJ mol−1 in both reactions while that for nitrogen formation in the nitrous oxide/ethane reaction changed from 106 ± 4 kJ mol−1, 573–613 K, to 133 ± 4 kJ mol−, 623–673 K. The kinetic results for both reactions fit the same rate equation:[Formula: see text]where px represents either [Formula: see text]. The rate-controlling step has been associated with the interaction of adsorbed species on the catalyst surface while both ethane and the oxidising gas appear to be directly involved in further steps in the mechanism. Samples were analysed routinely by scanning electron microscopy, X-ray powder diffraction, and infrared spectroscopy. Electron spectroscopy results from samples treated in various ways with hydrocarbon/oxidant mixtures gave O(1s) values from 528.7 to 529.7 eV which are indicative of binding energies usually associated with chemisorbed oxygen. No N(1s) spectrum was obtained from catalysts exposed to hydrocarbon/nitrous oxide mixtures, in agreement with the absence of bands in the infrared which are usually associated with nitrates or nitrogen/oxygen complexes. A binding energy value of 406.5 eV was measured in the comparable N(1s) spectrum of a catalyst used at 623 K for the oxidation of ethane by nitric oxide — a result which confirms conclusions from previous surface studies on the same system using infrared spectroscopy.



Sign in / Sign up

Export Citation Format

Share Document