Kinetics and mechanisms of oxidations by metal ions. Part VI. Oxidation of α-hydroxy acids by cerium(IV) in aqueous nitric acid

1986 ◽  
Vol 64 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Narain Datt ◽  
Ratan R. Nagori ◽  
Raj N. Mehrotra

The kinetics of oxidation of glycolic, malic, tartaric, and citric acids by cerium(IV) ammonium nitrate were investigated in 0.006 mol dm−3 nitric acid. The reaction was catalysed by H+ in the range 0.006–0.016 mol dm−3 at constant [Formula: see text] (0.02 mol dm−3). The pseudo first-order rate constant kobs was independent of [CeIII] (0.0004–0.002 mol dm−3). The proposed mechanism is based on the assumption that the formation of the precursor Ce(IV) – α-hydroxy acid complex precedes its rate controlling disproportionation, which is assisted by a proton, possibly due to the formation of the activated state [H+—CeIV – HA]≠ (where CeIV is the reactive cerium(IV) species and HA is the α-hydroxy acid). The free radical R1R2ĊOH produced in the rate controlling step further reacts with a number of Ce(IV) molecules in the fast step to yield the final oxidation product. The activation parameters for the rate controlling step could be evaluated only in the oxidation of tartaric acid.


2005 ◽  
Vol 70 (4) ◽  
pp. 585-592 ◽  
Author(s):  
J.H. Shan ◽  
S.Y. Huo ◽  
S.G. Shen ◽  
H.W. Sun

The kinetics of oxidation of 1,2-propanediol and 1,2,3-propanetriol by dihydroxyditelluratoargentate(III) (DDA) were studied spectrophotometrically between 298.2 K and 313.2 K in alkaline medium. The reaction rate showed first order dependence on DDA and 1 < nap < 2 order on the reductant. It was found that the pseudo-first order rate constant kobs increased with increasing concentration of OH-1 and decreasing concentration of TeO42-. There is a negative salt effect and no free radicals were detected. In view of this, the dihydroxymonotelluratoargentate(III) species is assumed to be the active species. A plausible mechanism involving a two-electron transfer is proposed and the rate equations derived from the mechanism can explain all the experimental results. The activation parameters, as well as the rate constants of the rate-determining step were calculated.



2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Jinhuan Shan ◽  
Caihong Yin

The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III) (DTA) in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant(kobs)increased with an increase in concentration of OH−and a decrease in concentration ofH4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.



1993 ◽  
Vol 58 (5) ◽  
pp. 1001-1006 ◽  
Author(s):  
Oľga Vollárová ◽  
Ján Benko

The kinetics of oxidation of [Co(en)2SCH2COO]+ with S2O82- was studied in water-methanol and water-tert-butyl alcohol mixtures. Changes in the reaction activation parameters ∆H≠ and ∆S≠ with varying concentration of the co-solvent depend on the kind of the latter, which points to a significant role of salvation effects. The solvation effect on the reaction is discussed based on a comparison of the transfer functions ∆Ht0, ∆St0 and ∆Gt0 for the initial and transition states with the changes in the activation parameters accompanying changes in the CO-solvent concentration. The transfer enthalpies of the reactant were obtained from calorimetric measurements.



1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.



2021 ◽  
pp. 11-12
Author(s):  
Deepika Jain ◽  
Shilpa Rathor

The present paper describes the kinetics of oxidation of l-Arginine by QDC in the presence of perchloric acid in 30% DMF-H O(v/v) medium at 2 + 40⁰C spectrophotometrically at λ =354nm. The reaction is rst order with respect to [QDC], [H ], and [substrate]. The reaction rate increased with max increasing volume percentage of DMF in reaction mixture. Michaelis- Menten type kinetic was observed with l-Arginine. The reaction rates were studied at different temperature and the activation parameters has been computed. The main product was identied as Cr (III) and 4-Guanidino buteraldehyde.



2004 ◽  
Vol 1 (2) ◽  
pp. 127-131 ◽  
Author(s):  
N. A. Mohamed Farook ◽  
R. Prabaharan ◽  
S. Rahini ◽  
R. Senthil Kumar ◽  
G. Rajamahendran ◽  
...  

The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA) byN-chlorosaccharin (NCSA) in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.



1955 ◽  
Vol 33 (12) ◽  
pp. 1780-1791 ◽  
Author(s):  
R. H. Betts

The kinetics of oxidation of uranium (IV) by iron (III) in aqueous solutions of perchloric acid have been investigated at four temperatures between 3.1 °C. and 24.8 °C. The reaction was followed by measurement of the amount of ferrous ion formed. For the conditions (H+) = 0.1–1.0 M, ionic strength = 1.02, (FeIII) = 10−4–10−5 M, and (UIV) = 10−4–10−5 M, the observed rate law is d(Fe2+)/dt = −2d(UIV)/dt[Formula: see text]K1 and K2 are the first hydrolysis constants for Fe3+ and U4+, respectively, and K′ and K″ are pseudo rate constants. At 24.8 °C., K′ = 2.98 sec.−1, and K″ = 10.6 mole liter−1 sec−1. The corresponding temperature coefficients are ΔH′ = 22.5 kcal./mole and ΔH″ = 24.2 kcal./mole. The kinetics of the process are consistent with a mechanism which involves, as a rate-controlling step, electron transfer between hydrolyzed ions.



2011 ◽  
Vol 8 (2) ◽  
pp. 903-909 ◽  
Author(s):  
Shan Jinhuan ◽  
Zhang Jiying

The kinetics of oxidation of diethanolamine and triethanolamine by potassium ferrate(VI)in alkaline liquids at a constant ionic strength has been studied spectrophotometrically in the temperature range of 278.2K-293.2K. The reaction shows first order dependence on potassium ferrate(VI), first order dependence on each reductant, The observed rate constant (kobs) decreases with the increase in [OH-], the reaction is negative fraction order with respect to [OH-]. A plausible mechanism is proposed and the rate equations derived from the mechanism can explain all the experimental results. The rate constants of the rate-determining step and the thermodynamic activation parameters are calculated.





Author(s):  
S. Parimala Vaijayanthi ◽  
N. Mathiyalagan

The kinetics of oxidation of amino acids namely, alanine, glycine, leucine, phenyl alanine and valine by N-chloropyrazinamide (NCPZA) in aqueous acetic acid medium in the presence of hydrochloric acid have been investigated. The observed rate of oxidation is first order in [NCPZA], [H+] and [Clˉ]. The order with respect to [amino acid] is zero. The rate of oxidation increases with increase in the percentage of acetic acid. The reaction rate increases slightly with increase in ionic strength, while retards with addition of pyrazinamide. Arrhenius and thermodynamic activation parameters have been evaluated from Arrhenius plot by studying the reaction at different temperatures. A most probable reaction mechanism has been proposed and an appropriate rate law is deduced toaccount for the observed kinetic data.



Sign in / Sign up

Export Citation Format

Share Document