The radial charge distribution and the shell structure of atoms and ions

1988 ◽  
Vol 66 (8) ◽  
pp. 1923-1930 ◽  
Author(s):  
Alfred M. Simas ◽  
Robin P. Sagar ◽  
Andrew C. T. Ku ◽  
Vedene H. Smith Jr.

The radial charge distribution, D(r), for the neutral atoms, hydrogen through uranium, and the singly positive ions, helium through barium and lutetium through radium, are computed from the non-relativistic SCF wavefunctions of Clementi and Roetti and McLean and McLean. The radial charge distribution is examined to see how effective it is for the determination of the shell structure of an atom or an ion with the results indicating that the maxima are the topological features of D(r) most indicative of shells. At most five shells are apparent based on the criterion that the maxima in D (r) correspond to the shells. The positions of the maxima in D(r) are shown to correlate well with the shell radii from the Bohr–Schrödinger theory of an atom. The small deviations are consistent with the shielding of the outer electrons from the nucleus, by the inner electrons. Furthermore, it is shown that the effects of shielding are more pronounced on the values of the radial distribution function at the extremal points. The spherically averaged charge density, [Formula: see text] is seen to be monotonically decreasing for all these ground states, a result which extends the previously known range of atomic systems for which this is true.

2006 ◽  
Vol 2006 (suppl_23_2006) ◽  
pp. 175-180
Author(s):  
G. Gómez-Gasga ◽  
T. Kryshtab ◽  
J. Palacios-Gómez ◽  
A. de Ita de la Torre

Author(s):  
M. Sliusarenko ◽  
O. Semenenko ◽  
T. Akinina ◽  
O. Zaritsky ◽  
V. Ivanov

In the article, based on the analysis of the requirements for the readiness of weapons and military equipment during combat use and the reliability of their operation in the course of combat operations, it was discovered that one of the reasons that causes a discrepancy between the declared failures and real ones may be the incorrect choice and justification of the time distribution function up to the refusal of military means. As a rule, during the development of these tools, the function of distribution of time to failure is chosen by analogy with similar patterns of weapons and military equipment. In the theory of reliability, special attention is given to choosing the function of time-breaking non-response (failures or failures). Therefore, the article deals with the questions of evaluating the effectiveness of functioning of complex systems and methods of modeling the processes of their functioning, taking into account the laws of the distribution of random variables. The discrepancy between the declared irregularity of the military apparatus and the fact that is actually observed in the troops can be explained by the incorrectly accepted hypothesis about the distribution of time to failure. Therefore, the article analyzes the order of the justification of such a function without taking into account the enemy's fire impact and the proposed variant of determining the function of distribution of the time of work until the refusal of the model of military equipment. The article also cites the reasons for the discrepancy between the claimed missile defense equipment and what is actually observed in the troops. The proposed mathematical model of faultlessness, which at stages of designing and design will allow to set requirements to the model of technology with the help of analytical description. The sequence of calculations of non-failure indexes based on the use of Weibull distribution is substantiated.


Soft Matter ◽  
2020 ◽  
Author(s):  
Ulices Que-Salinas ◽  
Pedro Ezequiel Ramirez-Gonzalez ◽  
Alexis Torres-Carbajal

In this work we implement a machine learning method to predict the thermodynamic state of a liquid using only its microscopic structure provided by the radial distribution function (RDF). The...


2011 ◽  
Vol 89 (1) ◽  
pp. 103-107 ◽  
Author(s):  
J.-Ph. Karr ◽  
L. Hilico ◽  
V. I. Korobov

High resolution ro-vibrational spectroscopy of H 2+ or HD+ can lead to a significantly improved determination of the electron to proton mass ratio me/mp if the theoretical determination of transition frequencies becomes sufficiently accurate. We report on recent theoretical progress in the description of the hyperfine structure of H 2+ , as well as first steps in the evaluation of radiative corrections at order mα7. Completion of the latter calculation should allow us to reach the projected 10−10 accuracy level and open the road to mass ratio determination.


2010 ◽  
Vol 12 (12) ◽  
pp. 1718-1721 ◽  
Author(s):  
Sergey Sigalov ◽  
Mikhael D. Levi ◽  
Gregory Salitra ◽  
Doron Aurbach ◽  
Joachim Maier

RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 8895-8902 ◽  
Author(s):  
E.-E. Bendeif ◽  
A. Gansmuller ◽  
K.-Y. Hsieh ◽  
S. Pillet ◽  
Th. Woike ◽  
...  

Total X-ray scattering coupled to atomic pair distribution function analysis (PDF) and solid state NMR allowed the identification and structural characterisation of isolated molecules and nanocrystals of sodium nitroprusside confined in mesoporous silica.


2011 ◽  
Vol 89 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. Antognini ◽  
F. Biraben ◽  
J. M.R. Cardoso ◽  
D. S. Covita ◽  
A. Dax ◽  
...  

We plan to measure several 2S–2P transition frequencies in μ4He+ and μ3He+ by means of laser spectroscopy with an accuracy of 50 ppm. This will lead to a determination of the corresponding nuclear rms charge radii with a relative accuracy of 3 × 10−4, limited by the uncertainty of the nuclear polarization contribution. First, these measurements will help to solve the proton radius puzzle. Second, these very precise nuclear radii are benchmarks for ab initio few-nucleon theories and potentials. Finally when combined with an ongoing measurement of the 1S–2S transition in He+, these measurements will lead to an enhanced bound-state QED test of the 1S Lamb shift in He+.


2009 ◽  
Vol 87 (7) ◽  
pp. 773-783 ◽  
Author(s):  
A. J. Buchmann

We show that the non-spherical charge distribution of the proton manifests itself in hydrogen hyperfine splitting as an increase (in absolute value) of the proton Zemach radius and polarization contributions.


Sign in / Sign up

Export Citation Format

Share Document