The volumetric and thermochemical properties of aqueous solutions of L-valine, L-leucine, and L-isoleucine at 288.15, 298.15, 313.15, and 328.15 K
Densities and volumetric heat capacities have been measured for aqueous solutions of L-valine, L-leucine, and L-isoleucine at 288.15, 298.15, 313.15, and 328.15 K. These data have been used to calculate apparent molar volumes, [Formula: see text] and apparent molar heat capacities, [Formula: see text] which in turn have been used to obtain standard state volumes, [Formula: see text] and standard state heat capacities, [Formula: see text] for each aqueous amino acid system. Helgeson, Kirkham, and Flowers equations, for neutral organics in water, have been used to model the calculated standard state volumes and heat capacities of the amino acids as a function of temperature at constant pressure. The results of our fitting procedures may be used to predict the behaviour of [Formula: see text] and [Formula: see text] for the selected amino acid systems outside of the temperature range utilised in this investigation.