flow calorimeter
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 16)

H-INDEX

26
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1021
Author(s):  
Henri Vahabi ◽  
Maryam Jouyandeh ◽  
Thibault Parpaite ◽  
Mohammad Reza Saeb ◽  
Seeram Ramakrishna

Development of green flame retardants has become a core part of the attention of material scientists and technologists in a paradigm shift from general purpose to specific sustainable products. This work is the first report on the use of coffee biowastes as sustainable flame retardants for epoxy, as a typical highly flammable polymer. We used spent coffee grounds (SCG) as well as SCG chemically modified with phosphorus (P-SCG) to develop a sustainable highly efficient flame retardant. A considerable reduction in the peak of heat release rate (pHRR) by 40% was observed in the pyrolysis combustion flow calorimeter analysis (PCFC), which proved the merit of the used coffee biowastes for being used as sustainable flame retardants for polymers. This work would open new opportunities to investigate the impact of other sorts of coffee wastes rather than SCG from different sectors of the coffee industry on polymers of different family.


2021 ◽  
Vol 2002 (1) ◽  
pp. 012007
Author(s):  
Xingye Wang ◽  
Bingjun Shen ◽  
Lihong Jin ◽  
Dan Zhou ◽  
Jian Tian

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3564
Author(s):  
Weronika Gieparda ◽  
Szymon Rojewski ◽  
Wanda Różańska

The study investigated the effectiveness of the combination of chemical and physical methods of natural fibers’ modification. The long flax fibers were subjected to various types of modification. These were silanization, plasma modification and a combination of these methods. For the silanization process, two types of silanes were used: amino- and vinylsilane. The application of structurally different compounds allowed us to acquire knowledge about the effect of the modifier structure on its properties. Various properties of flax fibers were investigated, comparing the results before and after different modification processes. The flammability of prepared samples were tested by pyrolysis combustion flow calorimeter (PCFC). In the effect of the natural fibers’ modifications, flammability was reduced even by 30%. The thermal stability of modified fibers increased. The FTIR tests of the gases released during thermal degradation of the tested fibers allowed us to determine the important compounds and prove a lower degree of flax-fiber decomposition after modification. Flax fibers were also tested to evaluate their physical properties (linear mass, average diameter, aspect ratio and hygroscopicity). Changes in surface morphology were observed by scanning electron microscope (SEM). The properties of natural fibers improved significantly, thus contributing to an increase in their suitability for the use in composites.


2021 ◽  
Vol 881 ◽  
pp. 51-56
Author(s):  
Xing Ye Wang ◽  
Bing Jun Shen ◽  
Li Hong Jin ◽  
Ling Yu Li ◽  
Jian Tian

A heat-flow calorimeter was introduced into the D/Pd gas-loading system to confirm the reliability and accuracy of the results obtained by isothermal calorimetry in the previous work. The effects of input power (electrical current) and pressure on excess heat were discussed under different experimental conditions. The results showed that the heat-flow calorimetry had higher accuracy than isothermal calorimetry. Under deuterium pressure of 30 kPa, the excess heat power decreased with the decrease of the input power, and the maximum excess heat power was (6.40 ± 0.19) W with an input power of 380 W. In the experiments of discussing the relationship between pressure and excess heat, the results showed there was a maximum excess power of (10.28 ± 3.40) W when the deuterium pressure was 220 Pa. The excess heat measured in the system was far more than that in chemical reaction. The results of SEM and EDS implied that excess heat came from nuclear transmutation processes.


Author(s):  
Timothy Aljoscha Frede ◽  
Marlene Dietz ◽  
Norbert Kockmann

AbstractFast chemical process development is inevitably linked to an optimized determination of thermokinetic data of chemical reactions. A miniaturized flow calorimeter enables increased sensitivity when examining small amounts of reactants in a short time compared to traditional batch equipment. Therefore, a methodology to determine optimal reaction conditions for calorimetric measurement experiments was developed and is presented in this contribution. Within the methodology, short-cut calculations are supplemented by computational fluid dynamics (CFD) simulations for a better representation of the hydrodynamics within the microreactor. This approach leads to the effective design of experiments. Unfavourable experimental conditions for kinetics experiments are determined in advance and therefore, need not to be considered during design of experiments. The methodology is tested for an instantaneous acid-base reaction. Good agreement of simulations was obtained with experimental data. Thus, the prediction of the hydrodynamics is enabled and the first steps towards a digital twin of the calorimeter are performed. The flow rates proposed by the methodology are tested for the determination of reaction enthalpy and showed that reasonable experimental settings resulted. Graphical abstract A methodology is suggested to evaluate optimal reaction conditions for efficientacquisition of kinetic data. The experimental design space is limited by thestepwise determination of important time scales based on specified input data.


Author(s):  
V. P. Sidorov ◽  
◽  
D. E. Sovetkin ◽  

The authors reviewed the research works on the effective power of direct and reverse polarity welding arcs with a non-consumable electrode in argon. The study shows that it is difficult to use the arc effective efficiency for effective power determination. It applies to the constricted arc more than to the free one. Based on data analysis for the effective power of polarities and the effective efficiency of a constricted arc burning toward the cooper heat flow calorimeter, the authors calculated the specific effective power of polarities and arc stresses. The maximum values are 23.2 W/A for the reverse polarity arc; and 14.2 W/A for the direct polarity arc. The study identified that the decrease in the specific effective power of polarities at the current increase within 100–150 A is well described by linear dependencies. With the current increase, there is a linear decrease in the direct polarity arc stress, while the reverse polarity arc stress remains constant. The spread of data for the specific effective power of polarities is about two times less than the spread for effective efficiency. Using a 2D mathematical model of the constricted arc column in a closed area, the authors calculated the power absorbed by plasma-forming argon and nozzle walls. As a result, the authors obtained the dependencies of the power transferred by argon on the nozzle channel length and the arc current. The specific effective power of argon flow for analyzed current densities and argon consumption shows poor dependence on the arc current and is equal to 5.5 W/A approximately. The power contribution of plasma-forming argon to the effective power of the constricted arc increases with the current increase.


2020 ◽  
Vol 690 ◽  
pp. 178644
Author(s):  
Yuxin Zheng ◽  
Chen Zhang ◽  
Haihua Liu

2020 ◽  
Vol 64 (9) ◽  
pp. 1615-1624
Author(s):  
R. A. Ribeiro ◽  
E. B. F. Dos Santos ◽  
P. D. C. Assunção ◽  
K. J. Daun ◽  
A. P. Gerlich

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2450 ◽  
Author(s):  
Valentin Carretier ◽  
Julien Delcroix ◽  
Monica Francesca Pucci ◽  
Pierre Rublon ◽  
José-Marie Lopez-Cuesta

A comparison of the influence of sepiolite and lignin as potential synergists for fire retardant (FR) systems based on ammonium polyphosphate (APP) has been carried out in polyurethane elastomer and polylactide. Different ratios of kraft lignin and sepiolite were tested in combination with APP in both polymers. The thermal stability and the fire behavior of the corresponding composites were evaluated using Thermogravimetric Analysis (TGA), a Pyrolysis Combustion Flow Calorimeter (PCFC) and Cone Calorimeter (CC). The mechanisms of flame retardancy imparted by APP and other components were investigated. Synergistic effects were highlighted but only for specific ratios between APP and sepiolite in polyurethane elastomer (PUE) and polylactide (PLA) on one hand, and between APP and lignin in PLA on the other hand. Sepiolite acts as char reinforcement but through the formation of new phosphorus compounds it is also able to form a protective layer. Conversely, only complementary effects on fire performance were noted for lignin in PUE due to a dramatic influence on thermal stability despite its action on char formation.


Sign in / Sign up

Export Citation Format

Share Document