Vinyl ether hydrolysis. XXIX. 1-Methoxy-1,3-butadiene: reaction mechanism and implication for hydrolysis of the mutagen fecapentaene-12

1994 ◽  
Vol 72 (7) ◽  
pp. 1632-1636 ◽  
Author(s):  
Yvonne Chiang ◽  
Robert Eliason ◽  
Gary H.-X. Guo ◽  
A. Jerry Kresge

The hydrolysis of cis- and trans-1-methoxy-1,3-butadiene in aqueous solution occurs by hydron transfer to the δ-carbon atom with little or no β-hydronation to give crotonaldehyde as essentially the sole aldehyde product. The reaction gives appreciable hydronium-ion isotope effects in the normal direction [Formula: see text] and shows general acid catalysis; five carboxylic acid catalytic coefficients for hydrolysis of the trans isomer give a good Brønsted relation with the exponent α = 0.59. This is taken as evidence that these reactions occur by the conventional mechanism for vinyl ether hydrolysis involving rate-determining hydron transfer to substrate carbon followed by rapid formation and decomposition of a hemiacetal intermediate. Comparison of the reactivity of the present dienyl ethers with that of their monoenyl analog, methyl vinyl ether, shows that introduction of the second double bond decreases reactivity considerably: the hydronium-ion catalytic coefficient is reduced by a factor of 8.3 for the trans isomer and by a factor of 160 for the cis isomer. This reduction supports a hypothesis advanced to explain the occurrence of reaction by a different mechanism recently discovered in the hydrolysis of the strongly mutagenic polyenyl ether, fecapentaene-12.

1980 ◽  
Vol 58 (2) ◽  
pp. 124-129 ◽  
Author(s):  
Y. Chiang ◽  
W. K. Chwang ◽  
A. J. Kresge ◽  
S. Szilagyi

Rates of hydrolysis of 1-ethoxy-3,3,5,5-tetramethylcyclopentene and 1-methoxy-2,3,3,5,5-pentamethylcyclopentene measured in mineral acid and formic and acetic acid buffer solutions show general acid catalysis and give large kinetic isotope effects in the normal direction (kH/kD > 1). This indicates that these reactions proceed by the conventional mechanism for vinyl ether hydrolysis in which proton transfer from the catalyzing acid to the substrate is rate-determining, and that the I-strain in these substrates is insufficiently great to shift the reaction mechanism to rapidly reversible substrate protonation followed by rate-determining hydration of the ensuing cationic intermediate.


1991 ◽  
Vol 69 (1) ◽  
pp. 84-87 ◽  
Author(s):  
A. J. Kresge ◽  
Y. Yin

An argument is presented which suggests that hydrolysis of the vinyl ether group of 1-methoxycyclooctene may occur by reversible proton transfer from a catalyzing acid to the β-carbon atom of the substrate, instead of by the conventional reaction mechanism in which this proton transfer is rate determining and not reversible. Hydrolysis of this substrate is then examined by measuring rates of reaction in dilute aqueous solutions of strong mineral acids (perchloric and hydrochloric) as well as in buffer solutions of seven carboxylic acids, biphosphate ion, and 1,1,1,3,3,3-hexafluoro-2-propanol. General acid catalysis is observed and a Brønsted relation with the exponent α = 0.73 is constructed. That, plus the isotope effects kH/kD = 2.9 and 6.0 for catalysis by hydronium ion and acetic acid respectively, as well as the lack of deuterium incorporation into the substrate when the reaction is carried out in D2O with D2PO4−/DPO42− buffer at pD = 8, show that carbon protonation of the substrate is not reversible and that the conventional reaction mechanism is operative. Key words: 1-methoxycyclooctene, vinyl ether hydrolysis, rate-determining proton transfer, Brønsted relation, solvent isotope effect.


1987 ◽  
Vol 65 (8) ◽  
pp. 1753-1756 ◽  
Author(s):  
A. Jerry Kresge ◽  
Ya Yin

The kinetics of acid-catalyzed hydrolysis of 2,3-dimethoxy-1,3-butadiene (1) to 3-methoxy-3-buten-2-one (2) and the subsequent 104 times slower conversion of the latter to biacetyl (3):[Formula: see text]were studied in aqueous solution at 25 °C. Both stages of this process give substantial hydrogen ion isotope effects, [Formula: see text] for Stage I and [Formula: see text] for Stage II, and Stage I shows general acid catalysis in formic and acetic acid buffers; both stages are therefore assigned the conventional mechanism for vinyl ether hydrolysis involving rate-determining proton transfer from catalyzing acid to substrate. The second vinyl ether group of the initial substrate (1) is found to have only a slight (3-fold) accelerative effect on the reactivity of the first group, but the acetyl substituent present in the intermediate 2 decreases its reactivity by a factor of 104; the latter appears to be due largely to the electron-withdrawing inductive effect of acetyl, with little or no influence from a countervailing electron-supplying resonance effect.


2000 ◽  
Vol 7 (6) ◽  
pp. 325-334 ◽  
Author(s):  
Aglaia Koutsodimou ◽  
Giovanni Natile

NMR was used to investigate the reaction of cis- and trans-[RuCl2(DMSO)4] with the antiviral drug acyclovir, a guanine derivative containing the acyclic (2-hydroxo) ethoxymethyl pendant linked to N(9). Studies were performed in aqueous solutions at ambient temperature and at 37 °C, and at various molar ratios. Both isomers yielded two compounds, a monoadduct and a bisadduct, the relative yields being dependent upon the metal to ligand concentration ratios. The products derived from the two Ru isomers displayed identical NMR spectra, suggesting that they have the same coordination environment, however the rate of formation of the monoadduct was higher in the case of the trans isomer than in the case of the cis isomer, while the rate of conversion of the monoadduct into the bisadduct appeared to be similar in both cases. As a consequence in the case of the trans isomer there is accumulation of monoadduct in the early stage of the reaction, whose concentration afterwards decreases with the progress of the reaction. As for platinum, also for ruthenium the preferred binding site is N(7) of the purine base, however, in the case of ruthenium a discrete amount of bisadduct is formed even in the presence of an excess of metallic substrate with respect to the acyclovir ligand; under similar conditions a platinum substrate would have given, nearly exclusively, the monoadduct.


1999 ◽  
Vol 52 (3) ◽  
pp. 173 ◽  
Author(s):  
Sarah J. Barton ◽  
Kevin J. Barnham ◽  
Abraha Habtemariam ◽  
Urban Frey ◽  
Rodney E. Sue ◽  
...  

cis-[PtCl2(15NH3)(c-C6H11NH2)] is an active metabolite of the oral platinum(IV) anticancer drug cis,trans,cis-[PtCl2(CH3CO2)2(NH2)(c-C6H11NH2)]. Since it is likely that guanine bases on DNA are targets for this drug, we have analysed the kinetics of reaction of this platinum(II) metabolite with guanosine 5′-monophosphate (5′-GMP) at 310 K, pH 7, using [1H, 15N] n.m.r. methods. Reactions of the trans isomer are reported for comparison. The reactions proceed via aquated intermediates, and, for the cis isomer, the rates of aquation and substitution of H2O by 5′-GMP are 2-5 times faster trans to the amine ligand (c-C6H11NH2) compared to trans to NH3 for both the first and second steps. For the trans complex, the first aquation step is c. 3 times faster than for the cis complex, as expected from the higher trans influence of Cl¯, whereas the rate of the second aquation step (trans to N7 of 5′-GMP) is comparable to that trans to NH3. These findings have implications for the courses of reactions with DNA.


1976 ◽  
Vol 31 (1) ◽  
pp. 35-38 ◽  
Author(s):  
M. Herberhold ◽  
G. O. Wiedersatz ◽  
C. G. Kreiter

The charge distribution in the methoxy -substituted olefins of the series ethylene, methyl vinyl ether, 1,1-dimethoxyethylene, cis- and trans-dimethoxyethylene, tetramethoxyethylene, is discussed on the basis of the 1H and 13C NMR spectra


2015 ◽  
Vol 93 (4) ◽  
pp. 463-467 ◽  
Author(s):  
Jefferson Chan ◽  
Ariel Tang ◽  
Andrew J. Bennet

The transition state for the hydronium-ion-promoted hydrolysis of α-d-glucopyranosyl fluoride in water has been characterized by combining multiple kinetic isotope effect measurements with theoretical modelling. The measured kinetic isotope effects for the C1-deuterium, C2-deuterium, C5-deuterium, anomeric carbon-13, and ring oxygen-18 are 1.219 ± 0.021, 1.099 ± 0.024, 0.976 ± 0.014, 1.014 ± 0.005, and 0.991 ± 0.013, respectively. The transition state for the hydronium ion reaction is late with respect to both C–F bond cleavage and proton transfer.


1974 ◽  
Vol 52 (17) ◽  
pp. 3106-3112 ◽  
Author(s):  
E. Costakis ◽  
P. Canonne ◽  
R. St-Jean

The reduction of some polymethyl-2,3-dihydro phenalen-1-ones by lithium aluminum hydride yields a mixture of cis and trans isomers; the percentage of each isomer depends to a considerable extent on its structure. Indeed, for some, the trans isomer predominates while for others the cis isomer is obtained in up to 88% yields. Moreover, in the particular case in which the trans isomer is formed in low yields, its preferred conformation is trans diaxial.The steric constraints which render certain transition states unfavourable during the attack of the hydride are discussed with the aid of spectroscopic data on the alcohols obtained. [Journal translation]


Sign in / Sign up

Export Citation Format

Share Document