Bacterial chemotaxis differences inEscherichia coliisolated from different hosts

2008 ◽  
Vol 54 (12) ◽  
pp. 1043-1052 ◽  
Author(s):  
Sijana H. Dzinic ◽  
Marcella Luercio ◽  
Jeffrey L. Ram

The mechanisms mediating the association between Escherichia coli and specific hosts are unknown. This study investigates the hypothesis that the host-specific associations of E. coli strains are mediated in part by differences in chemotaxis. To test this hypothesis, chemotactic responses of E. coli strains isolated from different host groups (carnivores, herbivores, and omnivores) were tested with various attractants. In low-density agar chemotaxis assays, the average motility of E. coli in response to aspartate, serine, and ribose among the different groups was not significantly different; however, strains from carnivores responded significantly more to aspartate, relative to their responses to serine, in comparison with strains from herbivores, which responded equally or better to serine than to aspartate. The relatively greater chemotactic response of strains from carnivores to aspartate than to serine was confirmed in a subset of strains by capillary chemotaxis assay. Differences in responses to serine and aspartate were not due to growth differences, as determined by comparison of 24 h growth curves with glycerol, aspartate, and serine carbon sources. The differences in chemotactic behavior of E. coli strains isolated from herbivores and carnivores support the hypothesis that host-specific associations of E. coli strains are mediated in part by differences in chemotactic behavior.

1995 ◽  
Vol 306 (3) ◽  
pp. 865-869 ◽  
Author(s):  
N J Watkins ◽  
M R Knight ◽  
A J Trewavas ◽  
A K Campbell

Intracellular Ca2+ has been previously implicated in the chemotactic response of Escherichia coli. However, no correlative measurements of intracellular free Ca2+ have been made during bacterial chemotaxis, essential if this is to be established. In order to monitor internal free Ca2+ in E. coli during challenge with chemotactic agents, the Ca(2+)-activated photoprotein aequorin was expressed in a chemotactic strain (AB1157) and a non-chemotactic strain [BL21(DE3)] of E. coli. Repellents were found to cause an increase (50-150 nM) in intracellular free Ca2+, whereas attractants caused a small but consistent decrease in intracellular free Ca2+. These data are in agreement with the proposed model that an increase in intracellular free Ca2+ causes tumbling. The effect of increasing external Ca2+ on the regulation of intracellular free Ca2+ in both strains was monitored by using aequorin. The resting level of free Ca2+ in E. coli (AB1157) was found to be 100 nM, which agrees with previous data [Gangola and Rosen (1987) J. Biol. Chem. 262, 12570-12574]. As these results also show differences in the regulation of intracellular free Ca2+ between the two strains in the presence of high external Ca2+ concentrations, this may have implications for the effect of high-Ca2+ environments on E. coli.


2003 ◽  
Vol 69 (3) ◽  
pp. 1759-1774 ◽  
Author(s):  
T. Polen ◽  
D. Rittmann ◽  
V. F. Wendisch ◽  
H. Sahm

ABSTRACT In its natural environment, Escherichia coli is exposed to short-chain fatty acids, such as acetic acid or propionic acid, which can be utilized as carbon sources but which inhibit growth at higher concentrations. DNA microarray experiments revealed expression changes during exponential growth on complex medium due to the presence of sodium acetate or sodium propionate at a neutral external pH. The adaptive responses to acetate and propionate were similar and involved genes in three categories. First, the RNA levels for chemotaxis and flagellum genes increased. Accordingly, the expression of chromosomal fliC′-′lacZ and flhDC′-′lacZ fusions and swimming motility increased after adaptation to acetate or propionate. Second, the expression of many genes that are involved in the uptake and utilization of carbon sources decreased, indicating some kind of catabolite repression by acetate and propionate. Third, the expression of some genes of the general stress response increased, but the increases were more pronounced after short-term exposure for this response than for the adaptive response. Adaptation to propionate but not to acetate involved increased expression of threonine and isoleucine biosynthetic genes. The gene expression changes after adaptation to acetate or propionate were not caused solely by uncoupling or osmotic effects but represented specific characteristics of the long-term response of E. coli to either compound.


1973 ◽  
Vol 136 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Bruce A. Haddock

1. The reconstitution of oxidase activity in cell-free extracts of a mutant of Escherichia coli K12Ymel, that require 5-aminolaevulinic acid for growth on non-fermentable carbon sources, is described. 2. The reconstitution is dependent on haematin or a haem extract from a prototrophic strain of E. coli, and the product of the reaction has been identified as NADH-reducible cytochrome b. 3. The requirement for haematin cannot be replaced by four other porphyrins. Coproporphyrin III does not inhibit the haematin-dependent reconstitution, mesoporphyrin IX and protoporphyrin IX apparently compete with haematin for a binding site on the cytochrome apoprotein(s) and deuteroporphyrin IX binds to cytochrome apoprotein(s) and cannot be subsequently replaced by haematin. 4. The properties of electron-transport particles from cell-free extracts of the mutant strain, grown aerobically in the presence or absence of 5-aminolaevulinic acid, are described. In the absence of 5-aminolaevulinic acid no detectable cytochromes are produced, and oxidase activities are lowered but there is no apparent effect on the activities of the NADH dehydrogenase and d-lactate dehydrogenase. 5. The reconstitution of oxidase activity by electron-transport particles from cells grown in the absence of 5-aminolaevulinic acid requires ATP and haematin, and the product of the reaction was identified as NADH-reducible cytochrome b. 6. It is concluded that the cytochrome apoproteins are synthesized and incorporated into the cytoplasmic membrane of E. coli in the absence of haem synthesis. The subsequent reconstitution of functional cytochrome(s) requires protohaem, but the nature of the side chain on the 2 and 4 positions of the porphyrin appears to be important.


2005 ◽  
Vol 187 (6) ◽  
pp. 2066-2076 ◽  
Author(s):  
Liang Wang ◽  
Yoshifumi Hashimoto ◽  
Chen-Yu Tsao ◽  
James J. Valdes ◽  
William E. Bentley

ABSTRACT Bacterial autoinducer 2 (AI-2) is proposed to be an interspecies mediator of cell-cell communication that enables cells to operate at the multicellular level. Many environmental stimuli have been shown to affect the extracellular AI-2 levels, carbon sources being among the most important. In this report, we show that both AI-2 synthesis and uptake in Escherichia coli are subject to catabolite repression through the cyclic AMP (cAMP)-CRP complex, which directly stimulates transcription of the lsr (for “luxS regulated”) operon and indirectly represses luxS expression. Specifically, cAMP-CRP is shown to bind to a CRP binding site located in the upstream region of the lsr promoter and works with the LsrR repressor to regulate AI-2 uptake. The functions of the lsr operon and its regulators, LsrR and LsrK, previously reported in Salmonella enterica serovar Typhimurium, are confirmed here for E. coli. The elucidation of cAMP-CRP involvement in E. coli autoinduction impacts many areas, including the growth of E. coli in fermentation processes.


2016 ◽  
Vol 55 (2) ◽  
pp. 81-90 ◽  
Author(s):  
M.A. Prieto-Calvo ◽  
M.K. Omer ◽  
O. Alvseike ◽  
M. López ◽  
A. Alvarez-Ordóñez ◽  
...  

AbstractPhenotypic, chemotaxonomic and genotypic data from 12 strains ofEscherichia coli werecollected, including carbon source utilisation profiles, ribotypes, sequencing data of the 16S–23S rRNA internal transcribed region (ITS) and Fourier transform-infrared (FT-IR) spectroscopic profiles. The objectives were to compare several identification systems forE. coliand to develop and test a polyphasic taxonomic approach using the four methodologies combined for the sub-typing of O157 and non-O157E. coli. The nucleotide sequences of the 16S–23S rRNA ITS regions were amplified by polymerase chain reaction (PCR), sequenced and compared with reference data available at the GenBank database using the Basic Local Alignment Search Tool (BLAST) . Additional information comprising the utilisation of carbon sources, riboprint profiles and FT-IR spectra was also collected. The capacity of the methods for the identification and typing ofE. colito species and subspecies levels was evaluated. Data were transformed and integrated to present polyphasic hierarchical clusters and relationships. The study reports the use of an integrated scheme comprising phenotypic, chemotaxonomic and genotypic information (carbon source profile, sequencing of the 16S–23S rRNA ITS, ribotyping and FT-IR spectroscopy) for a more precise characterisation and identification ofE. coli. The results showed that identification ofE. colistrains by each individual method was limited mainly by the extension and quality of reference databases. On the contrary, the polyphasic approach, whereby heterogeneous taxonomic data were combined and weighted, improved the identification results, gave more consistency to the final clustering and provided additional information on the taxonomic structure and phenotypic behaviour of strains, as shown by the close clustering of strains with similar stress resistance patterns.


1995 ◽  
Vol 58 (12) ◽  
pp. 1307-1313 ◽  
Author(s):  
KATHLEEN T. RAJKOWSKI ◽  
BENNE S. MARMER

Temperature abuse of foods is often transitory and little information is available describing the response of the foodborne pathogen, Escherichia coli O157:H7, to nonisothermal and/or fluctuating temperature storage. Growth responses were determined for a mixture of three E. coli O157:H7 strains in brain heart infusion (BHI) broth as a function of temperature (static and fluctuating), initial pH (5, 6, and 7), and NaCl content (0.5, 1, 2, and 3%). Five 6-h “square-wave” fluctuating temperature regimes were used: 4 to 12, 4 to 19, 4 to 28, 8 to 19, and 12 to 28°C and compared with growth at 8, 10, 12, 19, and 28°C. The growth curves obtained from fitting the Gompertz equation for the fluctuating temperatures were compared to those obtained for the static temperatures. Increased NaCl concentration decreased growth temperature both for the fluctuating temperature growth curves and the static growth data. The cells grew or remained viable for up to 21 days under all conditions and fluctuating temperatures. Growth kinetics at fluctuating temperatures more closely approximated the higher temperature than the midpoint temperature of each cyclic range. The results indicate that transitory abuse could lead to more rapid growth than expected of E. coli O157:H7 in foods and that given sufficient time E. coli O157:H7 can grow at as low as 8°C.


2009 ◽  
Vol 76 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Marie Bugarel ◽  
Lothar Beutin ◽  
Patrick Fach

ABSTRACT Rapid and specific detection of Shiga toxin-producing Escherichia coli (STEC) strains with a high level of virulence for humans has become a priority for public health authorities. This study reports on the development of a low-density macroarray for simultaneously testing the genes stx 1, stx 2, eae, and ehxA and six different nle genes issued from genomic islands OI-122 (ent, nleB, and nleE) and OI-71 (nleF, nleH1-2, and nleA). Various strains of E. coli isolated from the environment, food, animals, and healthy children have been compared with clinical isolates of various seropathotypes. The eae gene was detected in all enteropathogenic E. coli (EPEC) strains as well as in enterohemorrhagic E. coli (EHEC) strains, except in EHEC O91:H21 and EHEC O113:H21. The gene ehxA was more prevalent in EHEC (90%) than in STEC (42.66%) strains, in which it was unequally distributed. The nle genes were detected only in some EPEC and EHEC strains but with various distributions, showing that nle genes are strain and/or serotype specific, probably reflecting adaptation of the strains to different hosts or environmental niches. One characteristic nle gene distribution in EHEC O157:[H7], O111:[H8], O26:[H11], O103:H25, O118:[H16], O121:[H19], O5:H−, O55:H7, O123:H11, O172:H25, and O165:H25 was ent/espL2, nleB, nleE, nleF, nleH1-2, nleA. (Brackets indicate genotyping of the flic or rfb genes.) A second nle pattern (ent/espL2, nleB, nleE, nleH1-2) was characteristic of EHEC O103:H2, O145:[H28], O45:H2, and O15:H2. The presence of eae, ent/espL2, nleB, nleE, and nleH1-2 genes is a clear signature of STEC strains with high virulence for humans.


2011 ◽  
Vol 77 (14) ◽  
pp. 4886-4893 ◽  
Author(s):  
Quan Chen ◽  
Qian Wang ◽  
Guoqing Wei ◽  
Quanfeng Liang ◽  
Qingsheng Qi

ABSTRACTThe industrial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has been hindered by high cost and a complex control strategy caused by the addition of propionate. In this study, based on analysis of the PHBV biosynthesis process, we developed a PHBV biosynthetic pathway from a single unrelated carbon source via threonine biosynthesis inEscherichia coli. To accomplish this, we (i) overexpressed threonine deaminase, which is the key factor for providing propionyl-coenzyme A (propionyl-CoA), from different host bacteria, (ii) removed the feedback inhibition of threonine by mutating and overexpressing thethrABCoperon inE. coli, and (iii) knocked out the competitive pathways of catalytic conversion of propionyl-CoA to 3-hydroxyvaleryl-CoA. Finally, we constructed a series of strains and mutants which were able to produce the PHBV copolymer with differing monomer compositions in a modified M9 medium supplemented with 20 g/liter xylose. The largest 3-hydroxyvalerate fraction obtained in the copolymer was 17.5 mol%.


2007 ◽  
Vol 75 (10) ◽  
pp. 4891-4899 ◽  
Author(s):  
Shari A. Jones ◽  
Fatema Z. Chowdhury ◽  
Andrew J. Fabich ◽  
April Anderson ◽  
Darrel M. Schreiner ◽  
...  

ABSTRACT Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo 3 oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine.


2004 ◽  
Vol 186 (15) ◽  
pp. 5052-5061 ◽  
Author(s):  
Jonathan Lefman ◽  
Peijun Zhang ◽  
Teruhisa Hirai ◽  
Robert M. Weis ◽  
Jemma Juliani ◽  
...  

ABSTRACT Electron tomography is a powerful method for determining the three-dimensional structures of large macromolecular assemblies, such as cells, organelles, and multiprotein complexes, when crystallographic averaging methods are not applicable. Here we used electron tomographic imaging to determine the molecular architecture of Escherichia coli cells engineered to overproduce the bacterial chemotaxis receptor Tsr. Tomograms constructed from fixed, cryosectioned cells revealed that overproduction of Tsr led to formation of an extended internal membrane network composed of stacks and extended tubular structures. We present an interpretation of the tomogram in terms of the packing arrangement of Tsr using constraints derived from previous X-ray and electron-crystallographic studies of receptor clusters. Our results imply that the interaction between the cytoplasmic ends of Tsr is likely to stabilize the presence of the membrane networks in cells overproducing Tsr. We propose that membrane invaginations that are potentially capable of supporting axial interactions between receptor clusters in apposing membranes could also be present in wild-type E. coli and that such receptor aggregates could play an important role in signal transduction during bacterial chemotaxis.


Sign in / Sign up

Export Citation Format

Share Document