scholarly journals DNA Microarray Analyses of the Long-Term Adaptive Response of Escherichia coli to Acetate and Propionate

2003 ◽  
Vol 69 (3) ◽  
pp. 1759-1774 ◽  
Author(s):  
T. Polen ◽  
D. Rittmann ◽  
V. F. Wendisch ◽  
H. Sahm

ABSTRACT In its natural environment, Escherichia coli is exposed to short-chain fatty acids, such as acetic acid or propionic acid, which can be utilized as carbon sources but which inhibit growth at higher concentrations. DNA microarray experiments revealed expression changes during exponential growth on complex medium due to the presence of sodium acetate or sodium propionate at a neutral external pH. The adaptive responses to acetate and propionate were similar and involved genes in three categories. First, the RNA levels for chemotaxis and flagellum genes increased. Accordingly, the expression of chromosomal fliC′-′lacZ and flhDC′-′lacZ fusions and swimming motility increased after adaptation to acetate or propionate. Second, the expression of many genes that are involved in the uptake and utilization of carbon sources decreased, indicating some kind of catabolite repression by acetate and propionate. Third, the expression of some genes of the general stress response increased, but the increases were more pronounced after short-term exposure for this response than for the adaptive response. Adaptation to propionate but not to acetate involved increased expression of threonine and isoleucine biosynthetic genes. The gene expression changes after adaptation to acetate or propionate were not caused solely by uncoupling or osmotic effects but represented specific characteristics of the long-term response of E. coli to either compound.

2018 ◽  
Vol 46 (6) ◽  
pp. 1721-1728 ◽  
Author(s):  
Amy Switzer ◽  
Daniel R. Brown ◽  
Sivaramesh Wigneshweraraj

Bacterial adaptive responses to biotic and abiotic stresses often involve large-scale reprogramming of the transcriptome. Since nitrogen is an essential component of the bacterial cell, the transcriptional basis of the adaptive response to nitrogen starvation has been well studied. The adaptive response to N starvation in Escherichia coli is primarily a ‘scavenging response’, which results in the transcription of genes required for the transport and catabolism of nitrogenous compounds. However, recent genome-scale studies have begun to uncover and expand some of the intricate regulatory complexities that underpin the adaptive transcriptional response to nitrogen starvation in E. coli. The purpose of this review is to highlight some of these new developments.


2020 ◽  
Vol 295 (35) ◽  
pp. 12355-12367
Author(s):  
Josh McQuail ◽  
Amy Switzer ◽  
Lynn Burchell ◽  
Sivaramesh Wigneshweraraj

The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in Escherichia coli specifically experiencing long-term nitrogen starvation. Using the ability of T7 phage to replicate in nitrogen-starved bacteria as a biological probe of E. coli cell function during nitrogen starvation, we demonstrate that Hfq foci have a role in the adaptive response of E. coli to long-term nitrogen starvation. We further show that Hfq foci formation does not depend on gene expression once nitrogen starvation has set in and occurs indepen-dently of the transcription factor N-regulatory protein C, which activates the initial adaptive response to N starvation in E. coli. These results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.


2020 ◽  
Author(s):  
Josh McQuail ◽  
Amy Switzer ◽  
Lynn Burchell ◽  
Sivaramesh Wigneshweraraj

AbstractThe initial adaptive responses to nutrient depletion in bacteria often occur at the level of RNA metabolism. Hfq is an RNA-binding protein present in diverse bacterial lineages and contributes to many different aspects of RNA metabolism. We demonstrate that Hfq forms a distinct and reversible focus-like structure in E. coli specifically experiencing long-term nitrogen (N) starvation. Using the ability of T7 phage to replicate in N starved bacteria as a biological probe of E. coli cell function during N starvation, we demonstrate that Hfq foci have a role in the adaptive response to long-term N starvation. We further show that Hfq foci formation does not depend on gene expression during N starvation and occurs independently of the N regulatory protein C (NtrC) activated initial adaptive response to N starvation. The results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.Significance StatementBacteria have evolved complex strategies to cope with conditions of nitrogen (N) adversity. We now reveal a role for a widely studied RNA binding protein, Hfq, in the processes involved in how Escherichia coli copes with N starvation. We demonstrate that Hfq forms a distinct and reversible focus-like structure in long-term N starved E. coli. We provide evidence to suggest that the Hfq foci are important features required for adjusting E. coli cell function during N starvation for optimal adaptation to long-term N starvation. The results have broad implications for our understanding of bacterial adaptive processes in response to stress.


2016 ◽  
Vol 82 (15) ◽  
pp. 4628-4640 ◽  
Author(s):  
Yinka Somorin ◽  
Florence Abram ◽  
Fiona Brennan ◽  
Conor O'Byrne

ABSTRACTAlthoughEscherichia coliis generally considered to be predominantly a commensal of the gastrointestinal tract, a number of recent studies suggest that it is also capable of long-term survival and growth in environments outside the host. As the extraintestinal physical and chemical conditions are often different from those within the host, it is possible that distinct genetic adaptations may be required to enable this transition. Several studies have shown a trade-off between growth and stress resistance in nutrient-poor environments, with lesions in therpoSlocus, which encodes the stress sigma factor RpoS (σS). In this study, we investigated a unique collection of long-term soil-persistentE. coliisolates to determine whether the RpoS-controlled general stress response is altered during adaptation to a nutrient-poor extraintestinal environment. The sequence of therpoSlocus was found to be highly conserved in these isolates, and no nonsense or frameshift mutations were detected. Known RpoS-dependent phenotypes, including glycogen synthesis and γ-aminobutyrate production, were found to be conserved in all strains. All strains expressed the full-length RpoS protein, which was fully functional using the RpoS-dependent promoter reporter fusion PgadX::gfp. RpoS was shown to be essential for long-term soil survival ofE. coli, since mutants lackingrpoSlost viability rapidly in soil survival assays. Thus, despite some phenotypic heterogeneity, the soil-persistent strains all retained a fully functional RpoS-regulated general stress response, which we interpret to indicate that the stresses encountered in soil provide a strong selective pressure for maintaining stress resistance, despite limited nutrient availability.IMPORTANCEEscherichia colihas been, and continues to be, used as an important indicator species reflecting potential fecal contamination events in the environment. However, recent studies have questioned the validity of this, sinceE. colihas been found to be capable of long-term colonization of soils. This study investigated whether long-term soil-persistentE. colistrains have evolved altered stress resistance characteristics. In particular, the study investigated whether the main regulator of genes involved in stress protection, the sigma factor RpoS, has been altered in the soil-persistent strains. The results show that RpoS stress protection is fully conserved in soil-persistent strains ofE. coli. They also show that loss of therpoSgene dramatically reduces the ability of this organism to survive in a soil environment. Overall, the results indicate that soil represents a stressful environment forE. coli, and their survival in it requires that they deploy a full stress protection response.


2006 ◽  
Vol 188 (11) ◽  
pp. 3902-3910 ◽  
Author(s):  
Vyacheslav Palchevskiy ◽  
Steven E. Finkel

ABSTRACT Natural genetic competence is the ability of cells to take up extracellular DNA and is an important mechanism for horizontal gene transfer. Another potential benefit of natural competence is that exogenous DNA can serve as a nutrient source for starving bacteria because the ability to “eat” DNA is necessary for competitive survival in environments containing limited nutrients. We show here that eight Escherichia coli genes, identified as homologs of com genes in Haemophilus influenzae and Neisseria gonorrhoeae, are necessary for the use of extracellular DNA as the sole source of carbon and energy. These genes also confer a competitive advantage to E. coli during long-term stationary-phase incubation. We also show that homologs of these genes are found throughout the proteobacteria, suggesting that the use of DNA as a nutrient may be a widespread phenomenon.


2019 ◽  
Vol 86 (1) ◽  
Author(s):  
Yizhi Song ◽  
Michaël L. Cartron ◽  
Philip J. Jackson ◽  
Paul A. Davison ◽  
Mark J. Dickman ◽  
...  

ABSTRACT Genes encoding the photoreactive protein proteorhodopsin (PR) have been found in a wide range of marine bacterial species, reflecting the significant contribution that PR makes to energy flux and carbon cycling in ocean ecosystems. PR can also confer advantages to enhance the ability of marine bacteria to survive periods of starvation. Here, we investigate the effect of heterologously produced PR on the viability of Escherichia coli. Quantitative mass spectrometry shows that E. coli, exogenously supplied with the retinal cofactor, assembles as many as 187,000 holo-PR molecules per cell, accounting for approximately 47% of the membrane area; even cells with no retinal synthesize ∼148,000 apo-PR molecules per cell. We show that populations of E. coli cells containing PR exhibit significantly extended viability over many weeks, and we use single-cell Raman spectroscopy (SCRS) to detect holo-PR in 9-month-old cells. SCRS shows that such cells, even incubated in the dark and therefore with inactive PR, maintain cellular levels of DNA and RNA and avoid deterioration of the cytoplasmic membrane, a likely basis for extended viability. The substantial proportion of the E. coli membrane required to accommodate high levels of PR likely fosters extensive intermolecular contacts, suggested to physically stabilize the cell membrane and impart a long-term benefit manifested as extended viability in the dark. We propose that marine bacteria could benefit similarly from a high PR content, with a stabilized cell membrane extending survival when those bacteria experience periods of severe nutrient or light limitation in the oceans. IMPORTANCE Proteorhodopsin (PR) is part of a diverse, abundant, and widespread superfamily of photoreactive proteins, the microbial rhodopsins. PR, a light-driven proton pump, enhances the ability of the marine bacterium Vibrio strain AND4 to survive and recover from periods of starvation, and heterologously produced PR extends the viability of nutrient-limited Shewanella oneidensis. We show that heterologously produced PR enhances the viability of E. coli cultures over long periods of several weeks and use single-cell Raman spectroscopy (SCRS) to detect PR in 9-month-old cells. We identify a densely packed and consequently stabilized cell membrane as the likely basis for extended viability. Similar considerations are suggested to apply to marine bacteria, for which high PR levels represent a significant investment in scarce metabolic resources. PR-stabilized cell membranes in marine bacteria are proposed to keep a population viable during extended periods of light or nutrient limitation, until conditions improve.


2013 ◽  
Vol 34 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Ritu Banerjee ◽  
Brian Johnston ◽  
Christine Lohse ◽  
Stephen B. Porter ◽  
Connie Clabots ◽  
...  

Objective.To determine prevalence, predictors, and outcomes of infection due to Escherichia coli sequence type ST131.Design.Retrospective cohort.Setting.All healthcare settings in Olmsted County, Minnesota (eg, community hospital, tertiary care center, long-term care facilities, and ambulatory clinics).Patients.Ambulatory and hospitalized children and adults with extraintestinal E. coli isolates.Methods.We analyzed 299 consecutive, nonduplicate extraintestinal E. coli isolates submitted to Olmsted County laboratories in February and March 2011. ST131 was identified using single-nucleotide polymorphism polymerase chain reaction and further evaluated through pulsed-field gel electrophoresis. Associated clinical data were abstracted through medical record review.Results.Most isolates were from urine specimens (90%), outpatients (68%), and community-associated infections (61%). ST131 accounted for 27% of isolates overall and for a larger proportion of those isolates resistant to fluoroquinolones (81%), trimethoprim-sulfamethoxazole (42%), gentamicin (79%), and ceftriaxone (50%). The prevalence of ST131 increased with age (accounting for 5% of isolates from those 11–20 years of age, 26% of isolates from those 51–60 years of age, and 50% of isolates from those 91–100 years of age). ST131 accounted for a greater proportion of healthcare-associated isolates (49%) than community-associated isolates (15%) and for fully 76% of E. coli isolates from long-term care facility (LTCF) residents. Multivariable predictors of ST131 carriage included older age, LTCF residence, previous urinary tract infection, high-complexity infection, and previous use of fluoroquinolones, macrolides, and extended-spectrum cephalosporins. With multivariable adjustment, ST131-associated infection outcomes included receipt of more than 1 antibiotic (odds ratio [OR], 2.54 [95% confidence interval (CI), 1.25–5.17]) and persistent or recurrent symptoms (OR, 2.53 [95% CI, 1.08–5.96]). Two globally predominant ST131 pulsotypes accounted for 45% of STB 1 isolates.Conclusions.ST131isa dominant, antimicrobial-resistant clonal group associated with healthcare settings, elderly hosts, and persistent or recurrent symptoms.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Beatriz Merchel Piovesan Pereira ◽  
Xiaokang Wang ◽  
Ilias Tagkopoulos

ABSTRACT The mechanisms of the bacterial response to biocides are poorly understood, despite their broad application. To identify the genetic basis and pathways implicated in the biocide stress response, we exposed Escherichia coli populations to 10 ubiquitous biocides. By comparing the transcriptional responses between a short-term exposure (30 min) and a long-term exposure (8 to 12 h) to biocide stress, we established the common gene and pathway clusters that are implicated in general and biocide-specific stress responses. Our analysis revealed a temporal choreography, starting from the upregulation of chaperones to the subsequent repression of motility and chemotaxis pathways and the induction of an anaerobic pool of enzymes and biofilm regulators. A systematic analysis of the transcriptional data identified a zur-regulated gene cluster to be highly active in the stress response against sodium hypochlorite and peracetic acid, presenting a link between the biocide stress response and zinc homeostasis. Susceptibility assays with knockout mutants further validated our findings and provide clear targets for downstream investigation of the implicated mechanisms of action. IMPORTANCE Antiseptics and disinfectant products are of great importance to control and eliminate pathogens, especially in settings such as hospitals and the food industry. Such products are widely distributed and frequently poorly regulated. Occasional outbreaks have been associated with microbes resistant to such compounds, and researchers have indicated potential cross-resistance with antibiotics. Despite that, there are many gaps in knowledge about the bacterial stress response and the mechanisms of microbial resistance to antiseptics and disinfectants. We investigated the stress response of the bacterium Escherichia coli to 10 common disinfectant and antiseptic chemicals to shed light on the potential mechanisms of tolerance to such compounds.


2013 ◽  
Vol 81 (8) ◽  
pp. 2733-2742 ◽  
Author(s):  
Alexandre Bleibtreu ◽  
Pierre-Alexis Gros ◽  
Cédric Laouénan ◽  
Olivier Clermont ◽  
Hervé Le Nagard ◽  
...  

ABSTRACTThe extraintestinal virulence ofEscherichia coliis dependent on numerous virulence genes. However, there is growing evidence for a role of the metabolic properties and stress responses of strains in pathogenesis. We assessed the respective roles of these factors in strain virulence by developing phenotypic assays for measuringin vitroindividual and competitive fitness and the general stress response, which we applied to 82 commensal and extraintestinal pathogenicE. colistrains previously tested in a mouse model of sepsis. Individual fitness properties, in terms of maximum growth rates in various media (Luria-Bertani broth with and without iron chelator, minimal medium supplemented with gluconate, and human urine) and competitive fitness properties, estimated as the mean relative growth rate per generation in mixed cultures with a reference fluorescentE. colistrain, were highly diverse between strains. The activity of the main general stress response regulator, RpoS, as determined by iodine staining of the colonies, H2O2resistance, andrpoSsequencing, was also highly variable. No correlation between strain fitness and stress resistance and virulence in the mouse model was found, except that the maximum growth rate in urine was higher for virulent strains. Multivariate analysis showed that the number of virulence factors was the only independent factor explaining the virulence in mice. At the species level, growth capacity and stress resistance are heterogeneous properties that do not contribute significantly to the intrinsic virulence of the strains.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document