Interactions of airborne methyl jasmonate with vegetative storage protein gene and protein accumulation and biomass partitioning in Populus plants

2000 ◽  
Vol 30 (7) ◽  
pp. 1106-1113 ◽  
Author(s):  
T Beardmore ◽  
S Wetzel ◽  
M Kalous

In young poplar (Populus nigra Muench × Populus maximowiczii A. Henry) plants, vegetative storage proteins (VSPs), the bark storage protein (BSP), and (or) wound-inducible 4 protein (WIN4) mRNAs were present in the apical and basal leaves and in the basal leaves, respectively. VSPs accumulated in the apical leaves and to a lesser extent in the stem. The response of the plants to 20 µM airborne methyl jasmonate (MJ) was examined in four parts ( apical and basal leaves, stem, and roots) in both short-term (within 72 h) and long-term (1, 2, 3, and 4 weeks) experiments. In the short-term, MJ-treated plants either induced or increased the part-specific expression of win4 and bsp, and accumulation of BSP and (or) WIN4. In the long-term, MJ treatment resulted in part-specific alterations in protein and nitrogen concentration and further altered BSP and WIN4 accumulation. The MJ-treated plants increased both the biomass allocation to the stem, without a change in the relative growth rate, and the tolerance low temperature (-2°C). Together, these results suggest the BSP and WIN4 are both involved in short-term N cycling and that exogenous MJ treatment promotes changes in nitrogen metabolism in poplar.

2001 ◽  
Vol 28 (4) ◽  
pp. 279 ◽  
Author(s):  
Carine Noquet ◽  
Jean-Christophe Avice ◽  
Alain Ourry ◽  
Jeffrey J. Volenec ◽  
Suzanne M. Cunningham ◽  
...  

Our objectives were to study the regulation of N partitioning within tissues of non-nodulated alfalfa (Medicago sativa L.) and N storage in taproots as vegetative storage proteins (VSP) of 15, 19, and 32 kDa and β-amylase (57 kDa) by environmental (photoperiod, temperature, N availability) and endogenous factors (methyl jasmonate). When compared to long-day conditions (LD, 16 h day/8 h night), short-day (SD, 8 h day/16 h night), exposure to low temperature (5˚C) or application of methyl jasmonate (MeJA, 100 M ) for 35 d reduced the biomass shoot/ root ratio and modified the source–sink relationships for N. SD and MeJA treatments resulted in partitioning of N to taproots and a concomitant accumulation of VSPs. In comparison with LD, SD treatment also stimulated β-amylase gene expression 2.5-fold. Although low temperature increased the N partitioning to root tissues and the accumulation of soluble proteins in taproot, VSP concentration and β-amylase mRNA levels remained low. Increasing N concentration from 1 to 5 mM KNO3 doubled the total dry matter but did not affect the N partitioning within the plant, VSP accumulation, or ‚ β-amylase expression. These results suggested that short photoperiod can result in preferential N allocation toward taproots with a concomitant induction of VSP accumulation.


2001 ◽  
Vol 31 (6) ◽  
pp. 1098-1103 ◽  
Author(s):  
Susan D Lawrence ◽  
Janice EK Cooke ◽  
John S Greenwood ◽  
Theresa E Korhnak ◽  
John M Davis

Trees recycle nitrogen (N) to conserve this valuable nutrient. The processes that regulate N recycling within trees are poorly understood at the molecular level. Because vegetative storage proteins (VSPs) are thought to play important roles in within-plant N cycling, we are investigating the expression of VSP genes to gain insights into how seasonally controlled N cycling is regulated in trees. We compared steady-state mRNA levels of three different VSP homologs during short day induced terminal bud formation in hybrid poplar (Populus trichocarpa Torr. & Gray × Populus deltoides Bartr. ex Marsh.) – WIN4 (wound-inducible protein 4), BSP (bark storage protein), and pni288 (poplar nitrogen-regulated cDNA 288, a newly identified sequence). We determined that win4 and pni288 transcripts decrease, while bsp transcripts increase, as the terminal bud is formed. Immunolocalization analysis indicated that, during apical bud formation, BSP accumulates in the ground meristem and in parenchyma cells adjacent to xylem and proximal to the apical dome. Based on messenger RNA and protein expression analysis, we conclude that different VSPs play distinct roles in the poplar shoot apex, with BSP accumulating as a reserve near the shoot apex during terminal bud formation.


2015 ◽  
Vol 84 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Joanna Simińska ◽  
Wiesław Bielawski

In this paper the complete cDNA sequence of a newly identified triticale phytocystatin, TrcC-7, was analyzed. Because <em>TrcC-7</em> transcripts were present in seeds, we hypothesized that it may regulate storage protein accumulation and degradation. Therefore, changes in mRNA and protein levels during the entire period of seed development and germination were examined. Expression of <em>TrcC-7</em> increased during development and decreased at the end of maturation and subsequently increased during seed germination. Based on these results, TrcC-7 likely regulates cysteine proteinase activity during the accumulation and mobilization of storage proteins.


2014 ◽  
Vol 41 (3) ◽  
pp. 287 ◽  
Author(s):  
Mary A. Heskel ◽  
Danielle Bitterman ◽  
Owen K. Atkin ◽  
Matthew H. Turnbull ◽  
Kevin L. Griffin

Direct measurements of foliar carbon exchange through the growing season in Arctic species are limited, despite the need for accurate estimates of photosynthesis and respiration to characterise carbon cycling in the tundra. We examined seasonal variation in foliar photosynthesis and respiration (measured at 20°C) in two field-grown tundra species, Betula nana L. and Eriophorum vaginatum L., under ambient and long-term warming (LTW) conditions (+5°C), and the relationship of these fluxes to intraseasonal temperature variability. Species and seasonal timing drove most of the variation in photosynthetic parameters (e.g. gross photosynthesis (Agross)), respiration in the dark (Rdark) and light (Rlight), and foliar nitrogen concentration. LTW did not consistently influence fluxes through the season but reduced respiration in both species. Alongside the flatter respiratory response to measurement temperature in LTW leaves, this provided evidence of thermal acclimation. The inhibition of respiration by light increased by ~40%, with Rlight : Rdark values of ~0.8 at leaf out decreasing to ~0.4 after 8 weeks. Though LTW had no effect on inhibition, the cross-taxa seasonal decline in Rlight : Rdark greatly reduced respiratory carbon loss. Values of Rlight : Agross decreased from ~0.3 in both species to ~0.15 (B. nana) and ~0.05 (E. vaginatum), driven by decreases in respiratory rates, as photosynthetic rates remained stable. The influence of short-term temperature variability did not exhibit predictive trends for leaf gas exchange at a common temperature. These results underscore the influence of temperature on foliar carbon cycling, and the importance of respiration in controlling seasonal carbon exchange.


IAWA Journal ◽  
2004 ◽  
Vol 25 (4) ◽  
pp. 459-499 ◽  
Author(s):  
Wei-Min Tian ◽  
Zheng-Hai Hu

The distribution and ultrastructure of vegetative storage proteins in 44 species and one variety of 31 genera of Leguminosae were investigated by light- and electron microscopy and SDS-PAGE. Leguminosae are as a whole a vegetative storage protein-rich family, abundant with vacuolar protein inclusions in deciduous trees while much less so in evergreen trees. Several prominent proteins with molecular weights ranging from 15 to 45 kDa were isolated and identified to be vegetative storage proteins on the basis of their association with vacuolar protein inclusions and seasonal fluctuation. Vacuolar protein inclusions were present in protein body-like organelles in temperate species while localized in large central vacuoles in tropical ones during leafless periods. The inclusions varied in forms among species or in the same species, but the different forms were present in different cells, suggesting that vegetative storage proteins may be cell-type specific to some extent.


2019 ◽  
Vol 60 (10) ◽  
pp. 2193-2205
Author(s):  
Hong-Li Chou ◽  
Li Tian ◽  
Masako Fukuda ◽  
Toshihiro Kumamaru ◽  
Thomas W Okita

Abstract Tudor-SN is involved in a myriad of transcriptional and post-transcriptional processes due to its modular structure consisting of 4 tandem SN domains (4SN module) and C-terminal Tsn module consisting of Tudor-partial SN domains. We had previously demonstrated that OsTudor-SN is a key player for transporting storage protein mRNAs to specific ER subdomains in developing rice endosperm. Here, we provide genetic evidence that this multifunctional RBP is required for storage protein expression, seed development and protein body formation. The rice EM1084 line, possessing a nonsynonymous mutation in the 4SN module (SN3 domain), exhibited a strong reduction in grain weight and storage protein accumulation, while a mutation in the Tudor domain (47M) or the loss of the Tsn module (43M) had much smaller effects. Immunoelectron microscopic analysis showed the presence of a new protein body type containing glutelin and prolamine inclusions in EM1084, while 43M and 47M exhibited structurally modified prolamine and glutelin protein bodies. Transcriptome analysis indicates that OsTudor-SN also functions in regulating gene expression of transcriptional factors and genes involved in developmental processes and stress responses as well as for storage proteins. Normal protein body formation, grain weight and expression of many genes were partially restored in EM1084 transgenic line complemented with wild-type OsTudor-SN gene. Overall, our study showed that OsTudor-SN possesses multiple functional properties in rice storage protein expression and seed development and that the 4SN and Tsn modules have unique roles in these processes.


Sign in / Sign up

Export Citation Format

Share Document