A plot-based method for rapid estimation of forest canopy chemistry

2001 ◽  
Vol 31 (3) ◽  
pp. 549-555 ◽  
Author(s):  
Marie-Louise Smith ◽  
Mary E Martin

In this study we present a rapid method to scale the leaf-level chemistry of forest stands to the whole-canopy level. The method combines simple leaf-level measurements of mass and chemistry with a camera-based technique to estimate the fractional distribution of species' foliage area in a forest canopy. Results using this methodology for the estimation of whole-canopy N concentration (g/100 g) are presented and are shown to be comparable with those derived directly from litter fall collection. The ability to efficiently scale leaf-level traits to whole forest canopies enhances our ability to examine key relationships associated with these traits at various levels from the leaf to the forest stand and, with remote sensing technologies, to larger landscapes.

Author(s):  
W. Liu ◽  
J. Atherton ◽  
M. Mõttus ◽  
A. MacArthur ◽  
H. Teemu ◽  
...  

Solar induced chlorophyll a fluorescence (SIF) has been shown to be an excellent proxy of photosynthesis at multiple scales. However, the mechanical linkages between fluorescence and photosynthesis at the leaf level cannot be directly applied at canopy or field scales, as the larger scale SIF emission depends on canopy structure. This is especially true for the forest canopies characterized by high horizontal and vertical heterogeneity. While most of the current studies on SIF radiative transfer in plant canopies are based on the assumption of a homogeneous canopy, recently codes have been developed capable of simulation of fluorescence signal in explicit 3-D forest canopies. Here we present a canopy SIF upscaling method consisting of the integration of the 3-D radiative transfer model DART and a 3-D object model BLENDER. Our aim was to better understand the effect of boreal forest canopy structure on SIF for a spatially explicit forest canopy.


2008 ◽  
Vol 9 (5) ◽  
pp. 1005-1019 ◽  
Author(s):  
Jicheng Liu ◽  
Curtis E. Woodcock ◽  
Rae A. Melloh ◽  
Robert E. Davis ◽  
Ceretha McKenzie ◽  
...  

Abstract Forest canopies influence the proportion of the land surface that is visible from above, or the viewable gap fraction (VGF). The VGF limits the amount of information available in satellite data about the land surface, such as snow cover in forests. Efforts to recover fractional snow cover from the spectral mixture analysis model Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area and grain size (MODSCAG) indicate the importance of view angle effects in forested landscapes. The VGF can be estimated using both hemispherical photos and forest canopy models. For a set of stands in the Cold Land Field Processes Experiment (CLPX) sites in the Fraser Experimental Forest in Colorado, the convergence of both measurements and models of the VGF as a function of view angle supports the idea that VGF can be characterized as a function of forest properties. A simple geometric optical (GO) model that includes only between-crown gaps can capture the basic shape of the VGF as a function of view zenith angle. However, the GO model tends to underestimate the VGF compared with estimates derived from hemispherical photos, particularly at high view angles. The use of a more complicated geometric optical–radiative transfer (GORT) model generally improves estimates of the VGF by taking into account within-crown gaps. Small footprint airborne lidar data are useful for mapping forest cover and height, which makes the parameterization of the GORT model possible over a landscape. Better knowledge of the angular distribution of gaps in forest canopies holds promise for improving remote sensing of snow cover fraction.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


2021 ◽  
Vol 13 (14) ◽  
pp. 7539
Author(s):  
Zaw Naing Tun ◽  
Paul Dargusch ◽  
DJ McMoran ◽  
Clive McAlpine ◽  
Genia Hill

Myanmar is one of the most forested countries of mainland Southeast Asia and is a globally important biodiversity hotspot. However, forest cover has declined from 58% in 1990 to 44% in 2015. The aim of this paper was to understand the patterns and drivers of deforestation and forest degradation in Myanmar since 2005, and to identify possible policy interventions for improving Myanmar’s forest management. Remote sensing derived land cover maps of 2005, 2010 and 2015 were accessed from the Forest Department, Myanmar. Post-classification change detection analysis and cross tabulation were completed using spatial analyst and map algebra tools in ArcGIS (10.6) software. The results showed the overall annual rate of forest cover loss was 2.58% between 2005 and 2010, but declined to 0.97% between 2010 and 2015. The change detection analysis showed that deforestation in Myanmar occurred mainly through the degradation of forest canopy associated with logging rather than forest clearing. We propose that strengthening the protected area system in Myanmar, and community participation in forest conservation and management. There needs to be a reduction in centralisation of forestry management by sharing responsibilities with local governments and the movement away from corruption in the timber trading industry through the formation of local-based small and medium enterprises. We also recommend the development of a forest monitoring program using advanced remote sensing and GIS technologies.


1985 ◽  
Vol 63 (5) ◽  
pp. 980-987 ◽  
Author(s):  
Per-Anders Esseen

The seasonal and annual variation in the litter fall of epiphytic lichens and tree litter was studied over a period of 2 to 3 years at two forested hills in the eastern part of central Sweden. Litter fall was measured using traps and for one species, Usnea longissima, by collecting specimens present on the ground. Total litter fall amounted to 2.5 and 2.8 tons ha−1 year−1 of which lichens constituted 4.6 and 5.7% at the two sites. Lichen litter fall was highest during the period from late autumn to the beginning of summer. Both the lichens and the tree litter showed significant between-year differences. Usnea longissima had an annual turnover of 7.0 and 10.0% of the standing crop at the two sites. The thallus length distribution of U. longissima was positively skewed. It is concluded that dispersal of thallus fragments by wind evidently plays an important role for many of the filamentous lichens studied. It is suggested that U. longissima disperses over a much shorter distance than Alectoria sarmentosa and Bryoria spp. within a forest stand.


2015 ◽  
Vol 7 (4) ◽  
pp. 3526-3547 ◽  
Author(s):  
Gregory Asner ◽  
Roberta Martin

Sign in / Sign up

Export Citation Format

Share Document