Subalpine forest damage from a severe windstorm in northern Colorado

2001 ◽  
Vol 31 (12) ◽  
pp. 2089-2097 ◽  
Author(s):  
Thomas T Veblen ◽  
Dominik Kulakowski ◽  
Karen S Eisenhart ◽  
William L Baker

As windstorm intensity increases above some threshold, disturbance spread and damage patterns are expected to be less strongly shaped by preblowdown forest composition and structure than by the pattern of the storm itself. We examined this generalization by analyzing differences in wind damage among tree species and stands following a severe blowdown in 1997 affecting over 10 000 ha of subalpine forest in the Routt Divide area of northern Colorado, U.S.A. Individual tree traits such as species, height, and status as standing dead or alive strongly influenced the amount and type (uprooting vs. snapping) of wind damage. Populus tremuloides Michx. exhibited much less uprooting and overall damage than the conifers. Among the canopy trees of the conifer species, Pinus contorta Dougl. ex. Loud and Abies lasiocarpa (Hook.) Nutt. sustained the lowest and highest rates of snapping, respectively. Standing dead conifers were more likely to be snapped than uprooted, and taller trees were more likely to be damaged than shorter trees. Stand-level characteristics such as stand density, amount of dead basal area, and species composition were predictive of the amount of wind damage for areas of moderate- but not high-severity blowdown. Even in such an extreme windstorm as the Routt blowdown, which had estimated wind speeds of 200–250 km/h, individual tree attributes and stand-level characteristics significantly influenced the severity and type of wind damage.

2007 ◽  
Vol 22 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Hailemariam Temesgen ◽  
David W. Hann ◽  
Vincente J. Monleon

Abstract Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. Two sets of equations were evaluated. The first set included four base equations for estimating height as a function of individual tree diameter, and the remaining 16 equations enhanced the four base equations with alternative measures of stand density and relative position. The inclusion of the crown competition factor in larger trees (CCFL) and basal area (BA), which simultaneously indicates the relative position of a tree and stand density, into the base height–diameter equations increased the accuracy of prediction for all species. On the average, root mean square error values were reduced by 45 cm (15% improvement). On the basis of the residual plots and fit statistics, two equations are recommended for estimating tree heights for major tree species in southwest Oregon. The equation coefficients are documented for future use.


2004 ◽  
Vol 80 (4) ◽  
pp. 495-506 ◽  
Author(s):  
V. Lacerte ◽  
G R Larocque ◽  
M. Woods ◽  
W J Parton ◽  
M. Penner

The Lake States variant of the FVS (Forest Vegetation Simulator) model (LS-FVS), also known as the LS-TWIGS variant of FVS, was validated for black spruce (Picea mariana (Mill.) BSP), white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) forests in northern Ontario. Individual-tree data from 537 remeasured sample plots were used. This dataset included different combinations of site index, stand density and age. It was possible to compare observations and predictions for different projection length periods. The validation exercise included a biological consistency analysis, the computation of mean percent difference (MPD) for stand density, stand basal area, top height and quadratic mean diameter (QMD) and the comparison of observed and predicted individual-tree dbh. The biological consistency analysis indicated that LS-FVS logically predicted the effect of site index on top height, stand basal area and QMD for black spruce and jack pine. However, the decrease in stand basal area at young ages was inconsistent with the normal development pattern of the forest stands under study and was attributed to deficiencies in the prediction of mortality. LS-FVS was found to underpredict stand density, stand basal area and top height and to over-predict QMD. Even though there were large errors in the prediction of change in stand density, LS-FVS was nevertheless consistent in the prediction of the shape of the dbh size distribution. Key words: FVS, Forest Vegetation Simulator, validation, biological consistency analysis


2008 ◽  
Vol 25 (4) ◽  
pp. 186-194 ◽  
Author(s):  
Don C. Bragg

Abstract By adapting data from national and state champion lists and the predictions of an existing height model, an exponential function was developed to improve tree height estimation. As a case study, comparisons between the original and redesigned model were made with eastern white pine (Pinus strobus L.). For example, the heights predicted by the new design varied by centimeters from the original until the pines were more than 25 cm dbh, after which the differences increased notably. On a very good site (50-year base age site index [SI50] = 27.4 m) at the upper end of the range of basal area (BA; 68.9 m2/ha) for the region, the redesigned model predicted a champion-sized eastern white pine (actual measurements: 97.0 cm dbh, 50.9 m tall) to be 51.3 m tall, compared with 38.8 m using the original formulation under the same conditions. The NORTHWDS Individual Response Model (NIRM) individual tree model further highlighted the influence of these differences with long-term simulations of eastern white pine height. On a moderate site (SI50 = 18.7 m) with intermediate (BA = 15 m2/ha) stand density, NIRM results show that the original model consistently predicts heights to be 20–30% lower for mature white pine.


1999 ◽  
Vol 14 (3) ◽  
pp. 144-148 ◽  
Author(s):  
Gregory M. Filip ◽  
Stephen A. Fitzgerald ◽  
Lisa M. Ganio

Abstract A 30-yr-old stand of ponderosa pine was precommercially thinned in 1966 to determine the effects of thinning on tree growth and mortality caused by Armillaria root disease in central Oregon. After 30 yr, crop tree mortality was significantly (P = 0.02) less in thinned plots than in unthinned plots. Tree diameter growth was not significantly (P = 0.17) increased by thinning. Crop-tree basal area/ac growth was significantly (P = 0.03) greater in thinned plots. Apparently, from a root disease perspective, precommercial thinning of pure ponderosa stands significantly decreases the incidence of crop-tree mortality after 30 yr and significantly increases basal area/ac growth but not individual tree diameter growth. Recommendations for thinning based on stand density index (SDI) are given. West. J. Appl. For. 14(3):144-148.


2014 ◽  
Vol 44 (1) ◽  
pp. 92-100 ◽  
Author(s):  
John-Pascal Berrill ◽  
Kevin L. O’Hara

Estimating site productivity in irregular structures is complicated by variations in stand density, structure, composition in mixed stands, and suppression experienced by subordinate trees. Our objective was to develop an alternate to site index (SI) and demonstrate its application in models of individual-tree and stand growth. We analyzed coast redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) tree and stand growth in a grid of 234 permanent sample plots covering a 110 ha study area in north coastal California. Partial harvesting created a mosaic of densities and openings throughout the 60-year-old redwood-dominated forest. Redwood SI was a poor predictor of volume increment (VI) per hectare among redwood in each plot over two decades after harvest. A new index of redwood basal area increment (BAI) productivity, calculated using inventory data for all stems in even-aged stands and the oldest cohort of multiaged stands, was a stronger predictor of VI. Diameter increment of individual redwood trees correlated strongly with stand density and the new BAI index. Forest managers should expect widely divergent responses following partial harvesting in crowded even-aged stands, with the greatest response coming from dominant redwoods with long crowns retained in areas with low residual stand density and high BAI index.


1988 ◽  
Vol 18 (7) ◽  
pp. 859-866 ◽  
Author(s):  
K. L. O'Hara

The growth of individual trees from four thinning treatments in a 64-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stand was analyzed to determine desirable residual stand structures after thinning. Dominant and codominant trees had the highest individual tree stem volume growth rates over the previous 5 years, and accounted for most stand volume growth in thinned and unthinned stands. Two measures of growing space, crown projection area and sapwood basal area (a surrogate for leaf area), were used to measure how efficiently individual trees used their growing space. Crown classes were useful in characterizing growing space efficiency (volume growth per unit of growing space) only in the unthinned treatment. In thinned treatments, tall trees with medium-sized crowns were most efficient, while in the unthinned treatment, tall trees with relatively large crowns were most efficient. A large crown in an unthinned stand was comparable in size to a medium-sized crown in a thinned stand. Results suggest growing space is not limiting individual tree growth in thinned stands and that thinning to a particular stand structure is more appropriate than thinning to a particular level of stand density.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 833
Author(s):  
Daesung Lee ◽  
Jungkee Choi

Appropriate management of stand density is necessary to avoid wasted growing space and overcrowding-induced self-thinning and therefore to optimize profitability. We developed a Gingrich-style stocking chart for Korean red pine (Pinus densiflora), Korean white pine (P. koraiensis), and Japanese larch (Larix kaempferi) in Korea. Datasets for even-aged stands were categorized into two censored datasets via relative density based on species-specific stand density indices to assign adequate plots for tree allometry. Censored plot data for maximum density on full stocking were used to develop A-level stocking based on mean individual tree area. In censored plot data for minimum density on full stocking, individual trees represented open-grown trees, and a crown competition factor of 100 was proposed as B-level stocking. Based on parameters estimated from allometry, stocking diagrams comprising quadratic mean diameter, number of trees, and basal area were correctly expressed. A-level stocking at the same quadratic mean diameter revealed that Korean white pine had the most trees and largest basal area, while Japanese larch had the fewest trees and smallest basal area. In contrast, B-level stocking disclosed that Japanese larch had the most trees and basal area, whereas Korean white pine had the fewest trees and smallest basal area. The stocking diagrams suggest that silvicultural treatments for these species should be species-specific.


2015 ◽  
Vol 45 (12) ◽  
pp. 1768-1774 ◽  
Author(s):  
James J. Worrall ◽  
Andrew G. Keck ◽  
Suzanne B. Marchetti

Reports of forest damage have increased with the frequency of climatic extremes, but longer term impacts of such events on population dynamics of forest trees are generally unknown. Incited by the turn-of-the-century drought, sudden aspen decline (SAD) damaged 535 000 ha of Populus tremuloides Michx. in the Southern Rockies ecoregion of western North America. Although spread of the disease stopped in about 2009, most of the affected stands continued to deteriorate. Remeasurement of plots in southwestern Colorado showed that, since the peak of the epidemic, live basal area in sick plots decreased by an additional 28% to only 38% of that in healthy plots. Sick plots had much more recent damage than healthy plots, with almost three times as much recently dead basal area, over twice the density of recently dead trees, and almost four times as much recent crown loss. The important contributing agents in SAD were still active in sick stands in 2013. Density of small regeneration showed opposite trends, increasing in healthy plots and decreasing in sick plots. Timely regeneration treatments may be needed in some such stands to facilitate recovery. In addition to acute damage from climatic extremes, long-term decline diseases like SAD will likely be a common signature of forest damage from climate change.


2020 ◽  
Vol 50 (8) ◽  
pp. 751-759
Author(s):  
Mahadev Sharma

Taper models are used to estimate the diameter at any height along the bole of a tree. Individual tree volume can then be calculated based on these diameters and corresponding heights. As tree diameters are affected by stand density, inside- and outside-bark taper models that incorporate stand density information were developed for trees in red pine (Pinus resinosa Aiton) plantations. Data used in this study came from stem analysis on 150 red pine trees sampled from 30 even-aged, monospecific plantations across Ontario, Canada. A nonlinear mixed-effects approach was applied in fitting these taper models. Several forms of stand density were evaluated for both inside- and outside-bark diameters. A combination of stand densities expressed as [Formula: see text] (BA, basal area; TPH, trees per hectare) explained the most variation in stem taper of trees grown in red pine plantations in Ontario. This variable was highly significant in the regression and improved the predictive accuracies of both inside- and outside-bark taper models. The taper models presented here are dimensionally compatible. Therefore, these models are applicable for data using any system of units without adjusting parameter values.


2001 ◽  
Vol 31 (6) ◽  
pp. 1012-1018 ◽  
Author(s):  
Annie DesRochers ◽  
Victor J Lieffers

In north-central Alberta, 12 plots (9 m2) were hydraulically excavated in young trembling aspen (Populus tremuloides Michx.) stands (5–10 years old) of different sucker density to quantify the effects of sucker density on the parental root system, on the formation of new roots and on the growth of suckers. All roots were collected and divided into live and dead parental roots and new root categories. Size and age of parent roots at the time of suckering were determined. Total biomass ranged from 1 to 18 t/ha of live roots. Living root biomass was proportional to stand density and leaf area index (LAI). Low-density stands had a higher proportion of dead roots. Suckers in plots with more parental root biomass/sucker had greater height growth. Root/shoot ratios ranged from 0.46 to 3.52 but were not correlated with stand densities. Stands with larger basal area of suckers and greater mean parent root diameter produced more biomass of new roots. This research suggests that young sucker-origin aspen stands support a large underground biomass and that high sucker densities and LAI are required to prevent loss of parental root biomass.


Sign in / Sign up

Export Citation Format

Share Document