scholarly journals Practical Extension of a Lake States Tree Height Model

2008 ◽  
Vol 25 (4) ◽  
pp. 186-194 ◽  
Author(s):  
Don C. Bragg

Abstract By adapting data from national and state champion lists and the predictions of an existing height model, an exponential function was developed to improve tree height estimation. As a case study, comparisons between the original and redesigned model were made with eastern white pine (Pinus strobus L.). For example, the heights predicted by the new design varied by centimeters from the original until the pines were more than 25 cm dbh, after which the differences increased notably. On a very good site (50-year base age site index [SI50] = 27.4 m) at the upper end of the range of basal area (BA; 68.9 m2/ha) for the region, the redesigned model predicted a champion-sized eastern white pine (actual measurements: 97.0 cm dbh, 50.9 m tall) to be 51.3 m tall, compared with 38.8 m using the original formulation under the same conditions. The NORTHWDS Individual Response Model (NIRM) individual tree model further highlighted the influence of these differences with long-term simulations of eastern white pine height. On a moderate site (SI50 = 18.7 m) with intermediate (BA = 15 m2/ha) stand density, NIRM results show that the original model consistently predicts heights to be 20–30% lower for mature white pine.

2007 ◽  
Vol 22 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Hailemariam Temesgen ◽  
David W. Hann ◽  
Vincente J. Monleon

Abstract Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. Two sets of equations were evaluated. The first set included four base equations for estimating height as a function of individual tree diameter, and the remaining 16 equations enhanced the four base equations with alternative measures of stand density and relative position. The inclusion of the crown competition factor in larger trees (CCFL) and basal area (BA), which simultaneously indicates the relative position of a tree and stand density, into the base height–diameter equations increased the accuracy of prediction for all species. On the average, root mean square error values were reduced by 45 cm (15% improvement). On the basis of the residual plots and fit statistics, two equations are recommended for estimating tree heights for major tree species in southwest Oregon. The equation coefficients are documented for future use.


2004 ◽  
Vol 80 (4) ◽  
pp. 495-506 ◽  
Author(s):  
V. Lacerte ◽  
G R Larocque ◽  
M. Woods ◽  
W J Parton ◽  
M. Penner

The Lake States variant of the FVS (Forest Vegetation Simulator) model (LS-FVS), also known as the LS-TWIGS variant of FVS, was validated for black spruce (Picea mariana (Mill.) BSP), white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) forests in northern Ontario. Individual-tree data from 537 remeasured sample plots were used. This dataset included different combinations of site index, stand density and age. It was possible to compare observations and predictions for different projection length periods. The validation exercise included a biological consistency analysis, the computation of mean percent difference (MPD) for stand density, stand basal area, top height and quadratic mean diameter (QMD) and the comparison of observed and predicted individual-tree dbh. The biological consistency analysis indicated that LS-FVS logically predicted the effect of site index on top height, stand basal area and QMD for black spruce and jack pine. However, the decrease in stand basal area at young ages was inconsistent with the normal development pattern of the forest stands under study and was attributed to deficiencies in the prediction of mortality. LS-FVS was found to underpredict stand density, stand basal area and top height and to over-predict QMD. Even though there were large errors in the prediction of change in stand density, LS-FVS was nevertheless consistent in the prediction of the shape of the dbh size distribution. Key words: FVS, Forest Vegetation Simulator, validation, biological consistency analysis


2007 ◽  
Vol 24 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Gregory J. Jordan ◽  
Mark J. Ducey

Abstract Using data from 449 trees on 69 growth-and-yield plots located in southern and central New Hampshire, we developed models of crown radius for stand-grown eastern white pine (Pinus strobus L.) in New Hampshire. In addition to dbh, we tested single-tree measurements sometimes collected in forest inventories (such as live crown length and live crown ratio [LCR]), as well as simple variables to compensate for stand density and competitive position of the tree. A model using dbh, stand basal area (BA), and LCR provided the best predictions, but a model using dbh, stand BA, and the ratio of dbh to stand quadratic mean diameter proved nearly as accurate. We compare these equations to previously published equations for white pine.


2005 ◽  
Vol 35 (10) ◽  
pp. 2469-2478 ◽  
Author(s):  
J C Innes ◽  
M J Ducey ◽  
J H Gove ◽  
W B Leak ◽  
J P Barrett

Size–density metrics are used extensively for silvicultural planning; however, they operate on biological assumptions that remain relatively untested. Using data from 12 even-aged stands of eastern white pine (Pinus strobus L.) growing in southern New Hampshire, we compared size-density metrics with stand productivity and its biological components, including leaf area index (LAI) and measures of crown morphology. Density indices included Reineke's stand density index (SDI), a –3/2 relative density law, and trees per hectare. We examined models with and without site index and stand age as components, to predict total stand accretion (PAI), LAI, and growth efficiency (GE). LAI was a strong linear predictor of PAI (R2 = 0.89). However, of the indices tested only SDI was a significant predictor of accretion, and none were significantly related to LAI or GE. Site index was not a significant predictor of any variable when used alone, but in combination with SDI and stand age did lead to significant relationships with PAI (R2 = 0.84), LAI (R2 = 0.67), and GE (R2 = 0.92). Of the density indices tested only trees per hectare was strongly correlated with crown attributes. These results demonstrate that size-density metrics combined with other stand attributes are reasonably correlated with biological measures of stand growth.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 833
Author(s):  
Daesung Lee ◽  
Jungkee Choi

Appropriate management of stand density is necessary to avoid wasted growing space and overcrowding-induced self-thinning and therefore to optimize profitability. We developed a Gingrich-style stocking chart for Korean red pine (Pinus densiflora), Korean white pine (P. koraiensis), and Japanese larch (Larix kaempferi) in Korea. Datasets for even-aged stands were categorized into two censored datasets via relative density based on species-specific stand density indices to assign adequate plots for tree allometry. Censored plot data for maximum density on full stocking were used to develop A-level stocking based on mean individual tree area. In censored plot data for minimum density on full stocking, individual trees represented open-grown trees, and a crown competition factor of 100 was proposed as B-level stocking. Based on parameters estimated from allometry, stocking diagrams comprising quadratic mean diameter, number of trees, and basal area were correctly expressed. A-level stocking at the same quadratic mean diameter revealed that Korean white pine had the most trees and largest basal area, while Japanese larch had the fewest trees and smallest basal area. In contrast, B-level stocking disclosed that Japanese larch had the most trees and basal area, whereas Korean white pine had the fewest trees and smallest basal area. The stocking diagrams suggest that silvicultural treatments for these species should be species-specific.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


2009 ◽  
Vol 51 (1) ◽  
pp. 40-48
Author(s):  
Toomas Frey

Stand structure links up canopy processes and forest management Above- and belowground biomass and net primary production (Pn) of a maturing Norway spruce (Picea abies (L.) Karst.) forest (80 years old) established on brown soil in central Estonia were 227, 50 and 19.3 Mg ha correspondingly. Stand structure is determined mostly by mean height and stand density, used widely in forestry, but both are difficult to measure with high precision in respect of canopy processes in individual trees. However, trunk form quotient (q2) and proportion of living crown in relation to tree height are useful parameters allowing describe stand structure tree by tree. Based on 7 model trees, leaf unit mass assimilation activity and total biomass respiration per unit mass were determined graphically as mean values for the whole tree growth during 80 years of age. There are still several possible approaches not used carefully enough to integrate experimental work at instrumented towers with actual forestry measurement. Dependence of physiological characteristics on individual tree parameters is the missing link between canopy processes and forest management.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 905 ◽  
Author(s):  
Guerra-Hernández ◽  
Cosenza ◽  
Cardil ◽  
Silva ◽  
Botequim ◽  
...  

Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired from Unmanned Aerial Vehicles (UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model Efficiency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant difference was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantations.


2019 ◽  
Vol 49 (11) ◽  
pp. 1471-1482
Author(s):  
Woongsoon Jang ◽  
Bianca N.I. Eskelson ◽  
Louise de Montigny ◽  
Catherine A. Bealle Statland ◽  
Derek F. Sattler ◽  
...  

This study was conducted to quantify growth responses of three major commercial conifer species (lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson), interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), and spruce (white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex. Engelm. × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière))) to various fertilizer blends in interior British Columbia, Canada. Over 25 years, growth-response data were repeatedly collected across 46 installations. The fertilizer blends were classified into three groups: nitrogen only; nitrogen and sulfur combined; and nitrogen, sulfur, and boron combined. The growth responses for stand volume, basal area, and top height were calculated through absolute and relative growth rate ratios relative to a controlled group. Fertilizer blend, inverse years since fertilization, site index, stand density at fertilization, and their interactions with the fertilizer blend were used as explanatory variables. The magnitude and significance of volume and basal area growth responses to fertilization differed by species, fertilizer-blend groups, and stand-condition variables (i.e., site index and stand density). In contrast, the response in top height growth did not differ among fertilization blends, with the exception of the nitrogen and sulfur fertilizer subgroup for lodgepole pine. The models developed in this study will be incorporated into the current growth and yield fertilization module (i.e., Table Interpolation Program for Stand Yields (TIPSY)), thereby supporting guidance of fertilization applications in interior forests in British Columbia.


1991 ◽  
Vol 8 (2) ◽  
pp. 83-85
Author(s):  
Robert K. Shephard ◽  
Gregory A. Reams ◽  
Ronald C. Lemin

Abstract Plots were established in nine eastern white pine stands; six on outwash soils and three on till soils. Nitrogen was applied to the plots at rates of 0, 50, 100, and 200 lb/ac. Four-year growth response functions for basal area/ac and merchantable cubic ft volume/ac were developed. Basal area growth was 9.2 ft²/ac greater and volume growth was 235 ft³/ac greater on the till soils compared with the outwash soils, regardless of application rate Both basal area and volume growth increased as basal area/ac increased. Maximum basal area response, 5.7 ft²/ac, and maximum volume response, 198 ft³/ac, was estimated to occur at an application rate of approximately 160 lb of nitrogen/ac, with incremental response being greater at lower application rates. Fertilization at a rate of approximately 100 lb of nitrogen/ac appears to be a cost effective practice for many white pine stands. North. J. Appl. For. 8(2):83-85.


Sign in / Sign up

Export Citation Format

Share Document