Response of Gaultheria shallon and Epilobium angustifolium to large additions of nitrogen and phosphorus fertilizer

2004 ◽  
Vol 34 (2) ◽  
pp. 502-506 ◽  
Author(s):  
Jennifer N Bennett ◽  
Brent M Lapthorne ◽  
Leandra L Blevins ◽  
Cindy E Prescott

A study was established in coastal British Columbia to determine if repeated nitrogen (N) and phosphorus (P) fertilization negatively influences the reestablishment of salal (Gaultheria shallon Pursh) on cleared and burned cedar–hemlock (Thuja plicata Donn ex D. Don – Tsuga heterophylla (Raf.) Sarg.) forests. Fertilizers were applied for 3 years, and the biomass of ground vegetation and conifer seedling survival and growth were measured. Salal biomass decreased with high levels of N application (1000 kg N/ha), but not when 400 kg P/ha was added with 1000 kg N/ha. The addition of 500 kg N/ha, with or without P, stimulated salal growth. The biomass of fireweed (Epilobium angusti folium L.) increased with the addition of N + P but not with N alone. In the high N and N + P treatments, conifer seedling survival and heights were reduced. These results confirm earlier reports that salal responds negatively to high N applications and that this negative response can be alleviated with simultaneous additions of P. The response of fireweed to N + P, but not to N alone, suggests that the abundance of this species is more indicative of P than N availability.

2001 ◽  
Vol 31 (2) ◽  
pp. 302-312 ◽  
Author(s):  
Thomas J Brandeis ◽  
Michael Newton ◽  
Elizabeth C Cole

In a multilevel study to determine limits to underplanted conifer seedling growth, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.), western redcedar (Thuja plicata Donn ex D. Don), and western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings were planted beneath second-growth Douglas-fir stands that had been thinned to basal areas ranging from 16 to 31 m2/ha. Understory vegetation was treated with a broadcast herbicide application prior to thinning, a directed release herbicide application 2 years later, or no treatment beyond harvest disturbance. Residual overstory density was negatively correlated with percent survival for all four species. Broadcast herbicide application improved survival of grand fir and western hemlock. Western redcedar, grand fir, and western hemlock stem volumes were inversely related to overstory tree density, and this effect increased over time. There was a strong indication that this was also the case for Douglas-fir. Reduction of competing understory vegetation resulted in larger fourth-year stem volumes in grand fir and western hemlock.


2003 ◽  
Vol 33 (5) ◽  
pp. 854-861 ◽  
Author(s):  
Adrian Weber ◽  
Benjamin Gilbert ◽  
JP (Hamish) Kimmins ◽  
C E Prescott

Western redcedar (Thuja plicata Donn ex D. Don), a late successional species on northern Vancouver Island, has a low seedling survival in mature hemlock (Tsuga heterophylla (Raf.) Sarg.) – amabilis fir (Abies amabilis (Dougl. ex Loud.) Dougl. ex J. Forbes) (HA) stands. Shade, moss competition, and substrate were tested as causes of low cedar establishment. Cedar seeds were sown on reference and local soils isolated from surrounding soil, on nonisolated local soil, and on forest floor with moss removed. Western hemlock, amabilis fir, and cedar seeded on forest floor acted as controls. Treatments were implemented in the HA interior and the HA–clearcut edge, with soil treatments also implemented in clearcuts. Germinants and very young seedlings of cedar have a low leaf area of needle-like primary foliage. Cedar development of secondary foliage (the scale foliage normally associated with this species) was correlated with greater vigour and growth. Secondary foliage developed in the rankings forest edge and clearcut > forest interior, and reference isolated soil > local isolated soil > nonisolated local soil. Seedling survival rankings were edge > interior, and amabilis fir > hemlock > cedar on soil and with moss removed > cedar on forest floor. Cedar and amabilis fir showed a smaller growth response to light than hemlock. The results indicate that cedar, normally considered a late successional species, needs disturbance for early seedling establishment and survival and thus has some characteristics of an early seral species.


1999 ◽  
Vol 29 (6) ◽  
pp. 669-678 ◽  
Author(s):  
J E Graff, Jr. ◽  
R K Hermann ◽  
J B Zaerr

Seedlings of western redcedar (Thuja plicata Donn ex. D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) were transplanted into soils with low and high levels of available NO3-(and total N). Current-year foliage was sampled after 10 weeks to determine the effect of N availability on foliar cation-anion balance (C-A) and the concentrations of low molecular weight organic acids of the three species. Carboxylate concentrations were estimated by using the difference between sums of cations and anions (C-A): 750 mequiv.·kg-1for western redcedar, 351 mequiv.·kg-1for western hemlock, and 266 mequiv.·kg-1for Douglas-fir. Quinic acid was a primary constituent, accounting for 40% of the total for western redcedar and 75% for western hemlock and Douglas-fir. Oxalic acid was present in greatest concentration in the foliage of western redcedar (65 mequiv.·kg-1) but was a minor constituent in western hemlock and Douglas-fir. The quantified acids accounted for only 15% of the C-A of western redcedar but >80% of the C-A of western hemlock and Douglas-fir. A considerable portion of the C-A balance not accounted for in redcedar may be associated with the accumulation of CaCO3. Litterfall deposition of CaCO3may lead to the consumption of H+ions and enrichment of exchangeable soil Ca in the rooting zone of long-lived western redcedar trees. No statistically significant differences among the soils were detected with regard to C-A or the concentration of organic acids.


2005 ◽  
Vol 35 (1) ◽  
pp. 211-214 ◽  
Author(s):  
Cindy E Prescott ◽  
Leandra L Blevins

To test the hypothesis that fertilization with municipal biosolids causes a larger long-term tree growth response than fertilization with conventional chemical fertilizers, we measured the height and diameter of planted western redcedar (Thuja plicata Donn ex D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and amabilis fir (Abies amabilis (Dougl.) Forbes) 11 years after fertilization with biosolids or nitrogen and phosphorus fertilizer. There were four replicate plots of each tree species and treatment combination. The stand volume in cedar plots doubled in response to both treatments; in treated hemlock and fir plots, the stand volume was about triple that in control plots. There was little difference in tree response between biosolids-amended and fertilized plots. A type 3 response (growth rates remain elevated relative to those in the control) was evident for hemlock and fir. Biosolids appear to be as effective as chemical fertilizers in promoting conifer growth on these nutrient-poor sites, but their effect is neither greater nor more prolonged.


1996 ◽  
Vol 74 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
R. J. Keenan ◽  
C. E. Prescott ◽  
J. P. Kimmins ◽  
J. Pastor ◽  
B. Dewey

Litter decomposition and changes in N and organic chemicals were studied for 2 years in two forest types: old-growth western red cedar (Thuja plicata Donn) and western hemlock (Tsuga heterophylla (Raf.) Sarge) and 85-year-old stands of western hemlock and amabilis fir (Abies amabilis (Dougl.) Forbes) that developed after a major windstorm. We tested the hypothesis that lower rates of mass loss and different patterns of nutrient release in decomposing litter could explain lower nutrient availability in the cedar–hemlock type. Decomposition rate of a standard litter substrate, lodgepole pine needles, was almost identical in the two forest types indicating that each type had similar microenvironmental conditions for decomposers. Salal leaves had a lower lignin to N ratio and decomposed and released N more rapidly than the conifer litters. Among the conifers, cedar had poorer litter quality (higher lignin to N ratio), decomposed more slowly, and released considerably less N during the study. Cedar litter contributes to lower N availability in cedar–hemlock forests, but other factors, such as lower external N cycling and complexing of N with secondary carbon compounds during later stages of decomposition, are also likely to have a major influence on N availability. Keywords: Thuja plicata, Tsuga heterophylla, decomposition, litter quality, N cycling.


2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


1975 ◽  
Vol 55 (4) ◽  
pp. 949-954 ◽  
Author(s):  
M. C. J. VAN ADRICHEM ◽  
J. N. TINGLE

The effects of spring-applied nitrogen (0, 56, 112 and 224 kg/ha) and phosphorus (0 and 27.4 kg/ha) on the dry matter (DM) yield and forage quality of successive harvests of meadow foxtail (Alopecurus pratensis L.) were investigated. Nitrogen increased DM yield, crude protein, Cu, K and Zn contents and decreased P, Ca, Mg and Mn contents. Application of P in combination with N increased K content in the first cut and arrested the decline of P content due to N application in all cuts. The levels of dry matter digestibility and Cu declined in successive cuts whereas Mn content increased. At low N rates, Ca and Mg contents increased as the season advanced.


1989 ◽  
Vol 4 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Andrew C. Mason ◽  
David L. Adams

Abstract Bear damage was at least five times higher in thinned blocks than in adjacent unthinned blocks of western larch (Larix occidentalis), lodgepole pine (Pinus contorta), and Engelmann spruce (Picea engelmannii) on the Kootenai National Forest in northwest Montana. Western larch suffered the greatest damage (63% of all trees damaged and 92% of the trees killed). Damaged larch ranged from 4 to 13 in. dbh; the 4 to 8-in. dbh class accounted for 85% of the damage. Douglas-fir (Pseudotsuga menziesii), western redcedar (Thuja plicata), subalpine fir (Abies lasiocarpa), western white pine (Pinus monticola), and western hemlock (Tsuga heterophylla) were not damaged. Stand projections showed up to a 17% reduction in board-foot yield from bear damage, after 50 years, compared with hypothetical undamaged stands. West. J. Appl. For. 4(1):10-13, January 1989.


1993 ◽  
Vol 8 (2) ◽  
pp. 67-70 ◽  
Author(s):  
E. E. Nelson ◽  
Rona N. Sturrock

Abstract Several species of conifers were outplanted around infected stumps in Oregon and British Columbia to measure their susceptibility to laminated root rot caused by Phellinus weirii. Grand fir (Abies grandis) experienced nearly 30% mortality caused by P. weirii. Douglas-fir (Pseudotsuga menziesii) mortality exceeded 20%. Noble fir (A. procera), Sitka spruce (Picea sitchensis), giant sequoia (Sequoiadendron giganteum), western hemlock (Tsuga heterophylla), and ponderosa pine (Pinus ponderosa) mortality averaged less than 10%. Western white pine (P. monticola) and lodgepole pine (P. contorta) mortality was less than 1%. Phellinus weirii did not cause mortality of western redcedar (Thuja plicata) or redwood (Sequoia sempervirens). Apparent susceptibility, based on mortality over 17-20 growing seasons, was similar to that recorded in past field observations. West. J. Appl. For. 8(2):67-70.


2001 ◽  
Vol 31 (6) ◽  
pp. 978-987 ◽  
Author(s):  
J M Kranabetter ◽  
P Kroeger

We examined epigeous ectomycorrhizal mushroom richness and productivity after partial cutting in a western hemlock (Tsuga heterophylla (Raf.) Sarg.) - western redcedar (Thuja plicata Donn ex D. Don in Lamb.) forest of northwestern British Columbia. Mushrooms were collected throughout the fruiting season (July to October) for 3 years, starting 5 years after partial cutting, from plots with mesic soil conditions and residual basal areas ranging from 23 to 69 m2/ha for western hemlock and 0 to 26 m2/ha for western redcedar. Partial cutting had no apparent effect on mushroom phenology over the 3 years. Significant block interactions demonstrated that reductions in basal area of western hemlock could lead to positive, neutral, and negative responses in mushroom richness, biomass, and number of fruiting bodies. These responses were related to stand structure and the potential differences in tree vigour after partial cutting. In addition, there was weak evidence that western redcedar, a host for vesicular-arbuscular mycorrhiza, had a negative effect on average taxon richness. The study demonstrated that partial-cutting systems could allow some timber removal without necessarily reducing ectomycorrhizal mushroom communities.


Sign in / Sign up

Export Citation Format

Share Document