Somatic embryogenesis for plant production of Abies lasiocarpa

2005 ◽  
Vol 35 (5) ◽  
pp. 1053-1060 ◽  
Author(s):  
Harald Kvaalen ◽  
Ola Gram Daehlen ◽  
Anne Tove Rognstad ◽  
Borgny Grønstad ◽  
Ulrika Egertsdotter

Seeds of Abies lasiocarpa (Hook.) Nutt. (subalpine fir) were dissected, and the different parts were analyzed for elemental composition. The data were used to design a novel growth medium for initiation of somatic embryogenesis. Embryogenic cultures were initiated from immature zygotic embryos from six open-pollinated families of A. lasiocarpa on three different media. The frequency of initiation was the highest in early to mid-July when the zygotic embryo explants were ca. 0.8 mm long. Thereafter the response declined rapidly. The culture media did not significantly affect the initiation frequencies, but the subsequent growth and culture survival was dependent on the culture medium. On the Schenk Hildebrandt medium, many cultures ceased to grow and died. Several of the decaying cultures were rescued after transfer to one of the new media. Proliferating cultures could be stimulated to produce mature embryos. Of 2510 mature somatic embryos, 212 (8.4%) converted to plants, and 35 plants have grown over two periods.

2013 ◽  
Vol 41 (2) ◽  
pp. 385
Author(s):  
Adrian Ioan TIMOFTE ◽  
Simona VICAȘ

The somatic embryogenesis is an advanced method for clonal propagation and a useful tool for ex situ conservation of genetic resources. In this paper an experimental device was designed, composed of: one oak species (Quercus petraea), one provenance, four types of explants (developmental stages of the zygotic embryo) and four variants of culture medium. It was released the two-way statistical analyses of the two analyzed factors affecting the embryo induction efficiency: the stage of explant and culture medium (4 stages x 4 culture media). The most important factor affecting the efficiency of somatic embryogenesis was found to be the developmental stage of the zygotic embryos used as juvenile explants. The high embryogenic ability of young zygotic embryos and low embryogenic ability of maturing zygotic ones showed the strong positive relationship between somatic embryo induction and accumulation of reserve nutrients in cotyledons. The best results were obtained with the youngest embryos (stage 1), with a linear decrement towards the stage 4. The embryo induction efficiency ranged between 44% and 10% in Q. petraea. Two nutritive culture media and two growth hormone combinations were tested. The effect of culture medium proved to be totally insignificant, besides the differences observed among the variants cultivated on different media. The situation was the same as well for the nutrients as for growth regulators.


CORD ◽  
2017 ◽  
Vol 33 (2) ◽  
pp. 11
Author(s):  
Anitha Karun

Coconut is one of the principal crops of India cultivated in over 35 districts mainly in the southern states. The productivity of the crop is declining in many of the traditionally cultivated regions owing to ageing plantations as well as biotic and abiotic stresses. These plantations are to be replanted with high yielding varieties/hybrids for which adequate quantity of quality planting material is not available. Even though tissue culture research was initiated in many laboratories in the country, the work was eventually phased out in most of the laboratories for want of a repeatable protocol.  At ICAR-CPCRI, coconut tissue culture programs have been continuing for the past three decades. The attempts made include experimentation with different explants viz., immature inflorescence, plumular tissues, mature palm shoot meristem, ovary and anthers and different culture media supplemented with varying levels and types of hormones. Some of the successful protocols developed at the Institute include coconut zygotic embryo culture for collection and exchange of germplasm, cryopreservation and retrieval of zygotic embryos and pollen and plantlet regeneration from plumular tissues. Even though ICAR-CPCRI has succeeded in obtaining plantlets via direct organogenesis from inflorescence explants, the absence of friable calli formation from explants, the low rate of somatic embryo formation, large number of cultures turning to abnormal shoot development, non conversion of somatic embryos into plantlets, and formation of abnormal somatic embryos remain the major bottlenecks. Gene expression studies are being currently undertaken to decipher the molecular basis of in vitro recalcitrance.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Xiuxia Ren ◽  
Ya Liu ◽  
Byoung Ryong Jeong

Somatic embryogenesis is a preferred method for vegetative propagation due to its high propagation efficiency. In this study, zygotic embryos, cotyledons, and hypocotyls of Paeonia ostii ‘Fengdan’ were used as the explant to induce somatic embryogenesis. The results showed that a combination of 0.5 mg·L−1 thidiazuron (TDZ) and 0.5 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) was effective in inducing somatic embryos from the zygotic embryo and cotyledon explants. Hypocotyls only formed somatic embryos on Murashige and Skoog (MS) medium supplemented with both 0.5 mg·L−1 TDZ and 0.5 mg·L−1 1-naphthylacetic acid (NAA). Moreover, the compact callus was effectively produced from zygotic embryo, cotyledon, and hypocotyl explants in medium supplemented with a combination of 3.0 mg·L−1 6-benzylaminopurine (BA) and 1.0 mg·L−1 NAA, and then converted into somatic embryos in the same medium, and the ratio of the explants with embryo induction and number of embryos induced per explant were much higher than those induced by 0.5 mg·L−1 TDZ and either 0.5 mg·L−1 2,4-D or 0.5 mg·L−1 NAA. The MS medium was better than the woody plant medium (WPM) for inducing somatic embryos from zygotic embryo and hypocotyl explants, whereas the WPM was better than the MS medium for somatic embryogenesis induction from cotyledon explants. All of the somatic embryos developed well into mature embryos on their respective media supplemented with both 3.0 mg·L−1 BA and 1.0 mg·L−1 NAA. Overall, the protocols for indirect somatic embryogenesis from zygotic embryo, cotyledon, and hypocotyl of P. ostii ‘Fengdan’ were successfully established, which can greatly facilitate their propagation and breeding processes.


2009 ◽  
Vol 21 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Maristela Raitz Booz ◽  
Gilberto B. Kerbauy ◽  
Miguel Pedro Guerra ◽  
Rosete Pescador

The γ-aminobutyric acid (Gaba) is a non-protein amino acid found in prokaryotes and eukaryotes. Its role in plant development has not been fully established. This study reports a quantification of the levels of endogenous Gaba, as well as investigation of its role in different stages of somatic embryogenesis in Acca sellowiana Berg. (Myrtaceae). Zygotic embryos were used as explants and they were inoculated into the culture medium contained different concentrations of Gaba (0,2, 4, 6, 8 and 10 µM). The highest concentrations of endogenous Gaba were detected between the third and nine days after inoculation, reaching the value of 12.77 µmol.g-1FW. High frequency of somatic embryogenesis was observed in response to 10 µM Gaba. This treatment also resulted in a large number of normal embryos, and the lowest percentage of formation of fused somatic embryos, phenotypic characteristic of most deformed embryos in all treatments. Also, all treatments promoted the formation of the somatic embryos with positive characteristics of development resumption, which however did not originate the seedlings.


2014 ◽  
Vol 65 (1-2) ◽  
pp. 37-41 ◽  
Author(s):  
Maria G. Ostrolucká ◽  
Diana Krajmerová

For the initiation of somatic embryogenesis early cotyledonary stage of zygotic embryo explants (from 15th July until late August) was suitable. The highest frequency of differentiation of somatic embryos was obtained on cotyledons of zygotic embryos cultured on basal modified medium MS (with 1/2 concentration macronutrients) or WPM medium containing 500 mg•l<sup>-1</sup> glutamine, proline and casein hydrolysate and supplemented with 2,4-D (1,0-2,0 mg•l<sup>-1</sup>) and BAP (0,5-1,0 mg•l<sup>-1</sup>). The development of somatic embryos was direct and indirect and the process was continuous over a long period. Primary somatic embryos were able to produce secondary embryos. Repetitive somatic embryogenesis led to the proliferation of a large number of new somatic embryos on their cotyledons, hypocotyl or radicula. The process of embryo differentation is asynchronous - various stages of somatic embryos could be observed in embryogenic culture. A somatic embryo conversion was rare on tested media. Embryo germination occured on medium containing BAP (0,1 mg•l<sup>-1</sup>) or on medium with ABA and GA<sub>3</sub> (each 0,2 mg•l<sup>-1</sup>) after a previous culture on WPM medium without plant growth regulators supplemented with sorbitol (6%). The embryo germination occurred also on WPM medium with 0.2 mg•l<sup>-1</sup> BAP when cultures were mantained at 2<sup>o</sup>C for 4 weeks. Only 8 somatic embryos developed into plantlets. Their transplantation to <em>in vivo</em> conditions was unsuccessful.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1167d-1167 ◽  
Author(s):  
L.G. Buckley ◽  
E.T. Graham ◽  
R.N. Trigiano

Zygotic and somatic embryos are purported to follow similar developmental sequences, but few investigations have thoroughly compared the two processes. Developing pods of Cercis canadensis L. (redbud) were collected from trees on the Knoxville campus of the University of Tennessee once or twice per week from 28 March to 8 August 1991. At least 10 ovules/sample date were fixed in FAA to evaluate zygotic embryo ontogeny. A minimum of 40 ovules/sample date were aseptically excised and placed on SH medium supplemented with 9.0 μM 2,4-D and 5 mM ammonium ion to initate somatic embryogenesis. Zygotic and somatic embryos were prepared for histological examination using standard paraffin techniques. Somatic embryos developed primarily from cotyledons and epicotyls of zygotic embryos mat were cultured between 6 June and 19 July. Somatic and zygotic embryos were subtended by multiseriate suspensors and progressed through recognizable globular, cordate and cotyledonary stages of development. Cotyledon morphology was similar for both embryo types. However, many somatic embryos failed to differentiate dome-shaped shoot meristems exhibited by their zygotic counterparts.


2009 ◽  
Vol 39 (8) ◽  
pp. 1566-1574 ◽  
Author(s):  
Cathy L. Hargreaves ◽  
Cathie B. Reeves ◽  
Jens I. Find ◽  
Keiko Gough ◽  
Puthiyaparambil Josekutty ◽  
...  

The principal aim of this investigation was to improve somatic embryogenesis initiation and to enhance representation of families and genotypes within those families of Pinus radiata D. Don. A total of 19 open-pollinated seed families, many with unrelated and weakly related parents, were tested. Optimum stage of cone maturity for initiation success was tested by five collections made at 1 week intervals, spanning the developmental period from pro-embryo to cotyledonary embryos. Two media were compared; embryo-development media (EDM6) and a modified Litvay medium (Glitz). Two zygotic embryo explant-preparation techniques were tested; embryos with retained megagametophytes and excised embryos. Proliferating embryogenic tissues were obtained from all four treatments (2850 explants per treatment, 570 per collection time) for the 19 families. The best initiation rates were achieved with a combination of Glitz medium with excised zygotic embryos, with 55% of explants from all collections and all families combined giving rise to proliferating embryogenic tissue. At the optimal collection time for each of the families, this treatment gave a range of 47%–97% initiation success with an average of 70% per family.


2021 ◽  
Author(s):  
Claudia Garcia ◽  
Alex-Alan Furtado de Almeida ◽  
Marcio Costa ◽  
Dahyana Britto ◽  
Fabio Correa ◽  
...  

Abstract Propagation by somatic embryogenesis in Theobroma cacao has some issues to be solved, as many morphologically abnormal somatic embryos that do not germinate into plants are frequently observed, thus hampering plant production on a commercial scale. For the first time the methylome landscape of T. cacao somatic embryogenesis was examined, using whole-genome bisulfite sequencing technique, with the aim to understand the epigenetic basis of somatic embryo abnormalities. We identified 873 differentially methylated genes (DMGs) in the CpG context between zygotic embryos, normal and abnormal somatic embryos, with important roles in development, programmed cell death, oxidative stress, and hypoxia induction, which can help to explain the morphological abnormalities of somatic embryos. We also identified the role of ethylene and its precursor 1-aminocyclopropane-1-carboxylate in several biological processes, such as hypoxia induction, cell differentiation and cell polarity, that could be associated to the development of abnormal somatic embryos. The biological processes and the hypothesis of ethylene and its precursor involvement in the somatic embryo abnormalities in cacao are discussed.


2016 ◽  
Vol 88 (3 suppl) ◽  
pp. 1841-1850
Author(s):  
KEILA A.P. BONETTI ◽  
MARGUERITE QUOIRIN ◽  
REGINA C. QUISEN ◽  
SUELEN C.S. LIMA

ABSTRACT The interspecific oil palm hybrid BRS Manicoré (E. guineensis x E. oleifera) has superior agronomic characteristics. However, the germination rate is low (30%) and the process is slow when the seeds are sown in a conventional form. The purpose of this study was to optimize the in vitro germination of zygotic embryos of this hybrid comparing seed lots. The viability of zygotic embryos was evaluated by the tetrazolium test (0.075%) for 4 h. The embryos were cultured on MS and Y3 culture media, with and without the addition of NaH2PO4, as well as on MS, MS1/2 and N6 medium. In MS medium containing NaH2PO4, the germination rate was increased from 40 to 70% in comparison with the medium without sodium phosphate. The comparison between the culture media MS, MS 1/2, N6 and Y3 showed that 75% of zygotic embryos cultured in the Y3 medium formed whole plants (with roots and shoots defined), a higher percentage than embryos cultured on MS, MS 1/2 and N6 media (46, 35 and 17% respectively). In the same Y3 culture medium, the embryos were larger (36% ≥ 2 cm and 30% ≥ 5 cm) than in the other media. Results obtained by the tetrazolium test were similar to those of germination, showing the effect of the genotype of each seed lot. For the germination and development of plantlets it is essential to add NaH2PO4 to a culture medium containing no phosphate or with a low phosphate concentration.


Sign in / Sign up

Export Citation Format

Share Document