Root Grafts and their Silvicultural Implications

1972 ◽  
Vol 2 (2) ◽  
pp. 111-120 ◽  
Author(s):  
S. Eis

Many trees in stands of Douglas fir, western hemlock and western red cedar on Vancouver Island were joined by functional grafts. In a partially cut stand, 45% of the stumps showed evidence of continued growth and half of these (23%) were still growing vigorously more than 22 years after logging. On experimentally detopped trees, growth extended several meters up the bole. Dominant trees usually supported the growth of the root system and lower boles of grafted suppressed trees.Translocation through grafts may partially explain the frequent stagnation and slow recovery of stands after thinning from above, and may be involved in the usually rapid increase of growth after thinning from below. It is probably a contributing factor in establishing dominance and determining mortality in overtopped trees. In species that graft freely, the use of silvicides in spacing and thinning treatments should be restricted to young stands before grafts are established.

1993 ◽  
Vol 23 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
Rodney J. Keenan ◽  
Cindy E. Prescott ◽  
J.P. Hamish Kimmins

Biomass and C, N, P, and K contents of woody debris and the forest floor were surveyed in adjacent stands of old-growth western red cedar (Thujaplicata Donn)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH type), and 85-year-old, windstorm-derived, second-growth western hemlock–amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA type) at three sites on northern Vancouver Island. Carbon concentrations were relatively constant across all detrital categories (mean = 556.8 mg/g); concentrations of N and P generally increased, and K generally decreased, with increasing degree of decomposition. The mean mass of woody debris was 363 Mg/ha in the CH and 226 Mg/ha in the HA type. The mean forest floor mass was 280 Mg/ha in the CH and 211 Mg/ha in the HA stands. Approximately 60% of the forest floor mass in each forest type was decaying wood. Dead woody material above and within the forest floor represented a significant store of biomass and nutrients in both forest types, containing 82% of the aboveground detrital biomass, 51–59% of the N, and 58–61% of the detrital P. Forest floors in the CH and HA types contained similar total quantities of N, suggesting that the lower N availability in CH forests is not caused by greater immobilization in detritus. The large accumulation of forest floor and woody debris in this region is attributed to slow decomposition in the cool, wet climate, high rates of detrital input following windstorms, and the large size and decay resistance of western red cedar boles.


1993 ◽  
Vol 23 (9) ◽  
pp. 1815-1820 ◽  
Author(s):  
G.F. Weetman ◽  
M.A. McDonald ◽  
C.E. Prescott ◽  
J.P. Kimmins

A field experiment was designed to determine whether or not municipal sewage sludge would be effective for fertilization for chlorotic and checked plantations of western hemlock (Tsugaheterophylla (Raf.) Sarg.), Pacific silver fir (Abiesamabilis (Dougl.) Forbes), and western red cedar (Thujaplicata Donn ex. D. Don) already shown to be responsive to conventional nitrogen and phosphorus fertilization. Sewage sludge was applied at an estimated rate of 500 kg N/ha and 133 kg P/ha and ammonium nitrate and triple superphosphate were applied at 225 kg N/ha and 75 kg P/ha to plots planted 8 years earlier on a cutover of old-growth cedar–hemlock forest. Current-year leader growth and foliar vector analyses showed that the trees responded to both treatments during the first growing season with a doubling or tripling of growth rates and improved nutrition. The apparent problem of insufficient sulphur following nitrogen and phosphorus fertilization was not seen in trees treated with sludge. There were no apparent problems in micronutrient supply in these plantations. The extensive area of checked plantations on northern Vancouver Island present an opportunity for the disposal of sewage sludge.


1987 ◽  
Vol 17 (11) ◽  
pp. 1348-1354 ◽  
Author(s):  
S. Eis

Root systems of eight western hemlock (Tsugaheterophylla (Raf.) Sarg.), eight western red cedar (Thujaplicata Donn.), and six Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) trees, average age about 50 years, average dbh 26.3 cm, were hydraulically excavated. The sizes and shapes of the root systems are given and the root systems and roots are described. Fresh and dry weights of roots of all vegetation averaged 36 and 14 t/ha and were similar for all three species. Fine absorbing roots were distributed mainly in the organic horizon and immediately below it, i.e., in the top 10 or 15 cm of the soil; their turnover appears rapid. Their ovendry weight averaged 210 g/m2 and their length averaged 4 km/m2.


1987 ◽  
Vol 17 (12) ◽  
pp. 1585-1595 ◽  
Author(s):  
Phillip Sollins ◽  
Steven P. Cline ◽  
Thomas Verhoeven ◽  
Donald Sachs ◽  
Gody Spycher

Fallen boles (logs) of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and western red cedar (Thujaplicata Donn) in old-growth stands of the Cascade Range of western Oregon and Washington were compared with regard to their physical structure, chemistry, and levels of microbial activity. Western hemlock and western red cedar logs disappeared faster than Douglas-fir logs, although decay rate constants based on density change alone were 0.010/year for Douglas-fir, 0.016/year for western hemlock, and 0.009/year for western red cedar. We were unable to locate hemlock or red cedar logs older than 100 years on the ground, but found Douglas-fir logs that had persisted up to nearly 200 years. Wood density decreased to about 0.15 g/cm3 after 60–80 years on the ground, depending on species, then remained nearly constant. Moisture content of logs increased during the first 80 years on the ground, then remained roughly constant at about 250% (dry-weight basis) in summer and at 350% in winter. After logs had lain on the ground for about 80 years, amounts of N, P, and Mg per unit volume exceeded the amount present initially. Amounts of Ca, K, and Na remained fairly constant throughout the 200-year time span that was studied (100-year time span for Na). N:P ratios converged toward 20, irrespective of tree species or wood tissue type. C:N ratios dropped to about 100 in the most decayed logs; net N was mineralized during anaerobic incubation of most samples with a C:N ratio below 250. The ratio of mineralized N to total N increased with advancing decay. Asymbiotic bacteria in fallen logs fixed about 1 kg N ha−1 year−1, a substantial amount relative to system N input from precipitation and dry deposition (2–3 kg ha−1 year−1).


1965 ◽  
Vol 43 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. W. Wallis ◽  
G. Reynolds

Root rot caused by Poria weirii Murr. occurred when healthy roots of Douglas fir came into contact with inoculum in infected roots of the previous stand. Mycelium grew ectotrophically on the bark of the Douglas fir roots, frequently well in advance of growth in the wood, and penetrated to living tissues directly through sound as well as injured bark. Spread of the disease to adjacent trees took place where healthy and diseased roots were in contact, the mycelium apparently spreading to only a very limited extent through natural soil. It was shown that mycelium could invade roots of trees felled for at least 12 months and Douglas fir heartwood that had been buried in soil for at least 12 months. Viable Poria mycelium was isolated from infected roots as small as 2 cm in diameter 11 years after the trees had been cut. While Douglas fir and western hemlock appeared to be quite susceptible to infection, western red cedar, red alder, and bigleaf maple showed considerable resistance.


1990 ◽  
Vol 20 (9) ◽  
pp. 1382-1391 ◽  
Author(s):  
Caroline M. Preston ◽  
Phillip Sollins ◽  
Brian G. Sayer

13C cross-polarization magic-angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy was used to characterize heartwood from decaying fallen boles of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and western red cedar (Thujaplicata Donn). The sample decay classes I to V had been previously assigned based on field observations. Solid-state 13C CPMAS NMR spectra were analyzed to determine the proportion of C of the following chemical types: carbohydrate, lignin, aliphatic, and the sum of carboxyl plus carbonyl. For both Douglas-fir and western hemlock, the proportion of carbohydrate C increased slightly in the early stages of decay. This was followed by a substantial increase in lignin C, while carbohydrate C declined to about 10% of total C. By contrast, the spectra for western red cedar generally showed little change with increasing decay class. One exceptional sample of western red cedar class IV was highly decomposed, indicating complete loss of carbohydrate C, and some loss of lignin side-chain C. For all three species, signals from alkyl and carbonyl C were weak, but tended to increase slightly with decomposition, most likely because of the selective preservation of waxes and resins (alkyl C), and oxidation. Accumulation of chitin was not observed, and there was little evidence for lignin decomposition or for formation of humic polymers. 13C CPMAS NMR offers a simple and information-rich alternative to wet chemical analyses to monitor changes in organic components during decomposition of woody litter.


1976 ◽  
Vol 6 (2) ◽  
pp. 229-232 ◽  
Author(s):  
G. W. Wallis

Growth of Phellinus (Poria) weirii (Murr.) Gilbertson from alder block inoculum into the surrounding soil to infect healthy roots was less than 10 cm. Tree-to-tree spread of this root rot fungus, beyond that which would occur as a result of root contact, may be facilitated by growth of the mycelium over roots of minor vegetation and over wood buried in soil. Ectotrophic mycelium is profuse on the bark of infected roots of Douglas fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.), limited on infected roots of pine (Pinusmonticola Dougl., P. contorta Dougl, P. ponderosa Laws.), and nearly absent on infected roots of western red cedar (Thujaplicata Donn). Rate of spread of P. weirii root rot through stands with a high component of western red cedar or pine, or both, should be considerably slower than in pure stands of Douglas fir.


1994 ◽  
Vol 24 (12) ◽  
pp. 2424-2431 ◽  
Author(s):  
C.E. Prescott ◽  
C.M. Preston

To determine if western red cedar (Thujaplicata Donn) litter contributes to low N availability in cedar–hemlock forests, we measured concentrations of N and rates of net N mineralization in forest floors from single-species plantations of cedar, western hemlock (Tsugaheterophylla (Raf.) Sarg.), and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) on the same site in coastal British Columbia. Concentrations of total and extractable N and rates of net N mineralization during laboratory incubations were lowest in the cedar forest floor and highest in Douglas-fir. Less C was mineralized in the cedar forest floor during incubation, and the amount of N mineralized per unit C was least in cedar. Rates of mass loss of foliar litter of the three species were similar during the first 50 weeks of a 70-week laboratory incubation, but cedar lost mass more quickly during the final 20 weeks. Rates of net N mineralization in the forest floors were significantly correlated with the initial percent N, C/N, % Klason lignin, and lignin/N of foliar litter. Foliar litter of cedar had lower concentrations of N and greater proportions of alkyl C (based on 13C NMR spectroscopy) than Douglas-fir litter. These characteristics of cedar litter may contribute to low N availability in cedar–hemlock forest floors. Concentrations of alkyl C (waxes and cutin) may be better than lignin for predicting rates of mass loss and N mineralization from litter.


Sign in / Sign up

Export Citation Format

Share Document