Nitrogen mineralization and decomposition in forest floors in adjacent plantations of western red cedar, western hemlock, and Douglas-fir

1994 ◽  
Vol 24 (12) ◽  
pp. 2424-2431 ◽  
Author(s):  
C.E. Prescott ◽  
C.M. Preston

To determine if western red cedar (Thujaplicata Donn) litter contributes to low N availability in cedar–hemlock forests, we measured concentrations of N and rates of net N mineralization in forest floors from single-species plantations of cedar, western hemlock (Tsugaheterophylla (Raf.) Sarg.), and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) on the same site in coastal British Columbia. Concentrations of total and extractable N and rates of net N mineralization during laboratory incubations were lowest in the cedar forest floor and highest in Douglas-fir. Less C was mineralized in the cedar forest floor during incubation, and the amount of N mineralized per unit C was least in cedar. Rates of mass loss of foliar litter of the three species were similar during the first 50 weeks of a 70-week laboratory incubation, but cedar lost mass more quickly during the final 20 weeks. Rates of net N mineralization in the forest floors were significantly correlated with the initial percent N, C/N, % Klason lignin, and lignin/N of foliar litter. Foliar litter of cedar had lower concentrations of N and greater proportions of alkyl C (based on 13C NMR spectroscopy) than Douglas-fir litter. These characteristics of cedar litter may contribute to low N availability in cedar–hemlock forest floors. Concentrations of alkyl C (waxes and cutin) may be better than lignin for predicting rates of mass loss and N mineralization from litter.


1994 ◽  
Vol 24 (12) ◽  
pp. 2432-2438 ◽  
Author(s):  
C.E. Prescott ◽  
M.A. McDonald

The potential for amendments of simple C compounds or lime to improve N availability in humus from cedar–hemlock cutovers was tested in laboratory incubations and a greenhouse bioassay. Rates of C and N mineralization in samples of humus and woody humus during aerobic incubations in the laboratory were not affected by additions of potato starch. Mineralization of C was stimulated and net N mineralization was reduced after glucose addition. Microorganisms in humus may not be capable of degrading starch, and simpler C sources such as glucose increase immobilization of N in microbial biomass. The biomass of seedlings of western red cedar (Thujaplicata Donn), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and Sitka spruce (Piceasitchensis (Bong.) Carr.) grown in pots containing cedar–hemlock humus amended with dolomitic lime was similar to the biomass of seedlings grown in unamended humus after 18 months. Seedlings grown in humus amended with N and P fertilizers were significantly larger than those grown in unamended or lime-amended humus. It is unlikely that applications of C or lime to cedar–hemlock cutovers would increase rates of N mineralization from humus. Additions of nutrients appear to be the only practical means of alleviating the nutrient supply problems on these sites.



1993 ◽  
Vol 23 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
Rodney J. Keenan ◽  
Cindy E. Prescott ◽  
J.P. Hamish Kimmins

Biomass and C, N, P, and K contents of woody debris and the forest floor were surveyed in adjacent stands of old-growth western red cedar (Thujaplicata Donn)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH type), and 85-year-old, windstorm-derived, second-growth western hemlock–amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA type) at three sites on northern Vancouver Island. Carbon concentrations were relatively constant across all detrital categories (mean = 556.8 mg/g); concentrations of N and P generally increased, and K generally decreased, with increasing degree of decomposition. The mean mass of woody debris was 363 Mg/ha in the CH and 226 Mg/ha in the HA type. The mean forest floor mass was 280 Mg/ha in the CH and 211 Mg/ha in the HA stands. Approximately 60% of the forest floor mass in each forest type was decaying wood. Dead woody material above and within the forest floor represented a significant store of biomass and nutrients in both forest types, containing 82% of the aboveground detrital biomass, 51–59% of the N, and 58–61% of the detrital P. Forest floors in the CH and HA types contained similar total quantities of N, suggesting that the lower N availability in CH forests is not caused by greater immobilization in detritus. The large accumulation of forest floor and woody debris in this region is attributed to slow decomposition in the cool, wet climate, high rates of detrital input following windstorms, and the large size and decay resistance of western red cedar boles.



1993 ◽  
Vol 23 (4) ◽  
pp. 605-610 ◽  
Author(s):  
C. E. Prescott ◽  
M.A. McDonald ◽  
G.F. Weetman

Availability of N and P was compared in the forest floors of old-growth forests of western red cedar (Thujaplicata Donn)and western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH forests), and second-growth forests of western hemlock and amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA forests) of windthrow origin. Five samples of each forest floor layer (litter, fermentation (woody and nonwoody), and humus (woody and nonwoody)) were collected from three forests of each type (CH and HA). All layers of CH forest floors had smaller concentrations of total and extractable N and mineralized less N during 40-day aerobic incubations in the laboratory. Total and extractable P was lower in the litter layer of CH forest floors. Seedlings of western red cedar, Sitka spruce (Piceasitchensis (Bong.) Carr.), western hemlock, and amabilis fir grown from seed in forest floor material from CH forests grew more slowly and took up less N and P than did seedlings grown in HA forest floor material. The low supply of N and P in CH forest floors may contribute to the nutrient supply problems encountered by regenerating trees on cutovers of this forest type.



2000 ◽  
Vol 30 (11) ◽  
pp. 1698-1706 ◽  
Author(s):  
K D Thomas ◽  
C E Prescott

Forest floor samples from a 25-year-old plantation of three tree species (Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.), and paper birch (Betula papyrifera Marsh.)) growing on the same site were incubated (aerobically) in the laboratory for 29 days. Rates of N mineralization in the forest floors of Douglas-fir (165.1 µg/g) was significantly greater than either birch (72.9 µg/g) or lodgepole pine (51.2 µg/g). Douglas-fir forest floors also had the highest N concentration, lowest C/N ratio, and highest NH4-N concentrations, followed by paper birch and lodgepole pine. Douglas-fir forest floors also mineralized more N per unit of either N or C than the other species. There were no differences in rates of CO2-C mineralization in forest floors among the three species. Nitrogen mineralization rates were positively correlated with the N concentration of the forest floor (r2 = 0.81) and also with the C/N and NH4-N concentration of the forest floor. Nitrogen concentration, C/N, and lignin/N of foliar litter were poor predictors of N mineralization rates resulting from Douglas-fir litter having the lowest N concentrations in litter but the highest rates of net N mineralization in the forest floor. Nitrogen mineralization in the forest floor was negatively correlated (r2 = 0.67) with the lignin concentration in foliar litter. Douglas-fir litter had low lignin concentrations, which may allow more of the mineralized N to remain in inorganic forms rather than being bound in humus. Our results suggest that a component of Douglas-fir might improve N availability in coniferous forest floors.



2000 ◽  
Vol 30 (9) ◽  
pp. 1341-1352 ◽  
Author(s):  
C E Prescott ◽  
L Vesterdal ◽  
J Pratt ◽  
K H Venner ◽  
L M de Montigny ◽  
...  

We examined the extent to which nutrient concentrations and C and N mineralization rates in forests floors under different tree species are predictable from the chemistry of foliar litter and its rate of decomposition. We studied replicated single species plantations of western redcedar (Thuja plicata Donn ex D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and Sitka spruce (Picea sitchensis (Bong.) Carr.) at four locations. Nutrient concentrations in forest floors correlated poorly with litter nutrient concentrations; the only significant relationships were for Ca and K. Nitrogen mineralization correlated weakly with forest floor C/N ratio, and differed more among sites than among species. None of the litter chemistry parameters were related to net N mineralization rates. Decomposition was fastest in hemlock litter, intermediate in Douglas-fir litter and lowest in cedar litter. Litter also decomposed more rapidly on hemlock forest floors than on cedar forest floors. Rates of N mineralization in the forest floors were not related to rates of decomposition of foliar litter. Differences among sites in N mineralization rates were related to the understory vegetation composition, particularly the amount of the ericaceous shrub salal, which in turn was related to slope position. These site factors appeared to override the effect of tree species on rates of N mineralization.



1987 ◽  
Vol 17 (11) ◽  
pp. 1348-1354 ◽  
Author(s):  
S. Eis

Root systems of eight western hemlock (Tsugaheterophylla (Raf.) Sarg.), eight western red cedar (Thujaplicata Donn.), and six Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) trees, average age about 50 years, average dbh 26.3 cm, were hydraulically excavated. The sizes and shapes of the root systems are given and the root systems and roots are described. Fresh and dry weights of roots of all vegetation averaged 36 and 14 t/ha and were similar for all three species. Fine absorbing roots were distributed mainly in the organic horizon and immediately below it, i.e., in the top 10 or 15 cm of the soil; their turnover appears rapid. Their ovendry weight averaged 210 g/m2 and their length averaged 4 km/m2.



1992 ◽  
Vol 22 (9) ◽  
pp. 1222-1229 ◽  
Author(s):  
M.A. Radwan

Experiments were conducted to determine the effects of four different forest soils on growth and shoot nutrients of potted Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.) seedlings, in absence and in presence of forest floor, and with and without N and P fertilizers. Nine-month-old seedlings from low-elevation seed sources were used, and seedlings were grown for 2 years in a roofed lathhouse. Soils were of the Klone, Vesta, Bunker, and Shelton series; Klone and Vesta soils, and Bunker and Shelton soils, were collected from western hemlock and Douglas-fir stands, respectively. The fertilizers ammonium nitrate at 100 kg N/ha and triple superphosphate at 226 kg P/ha were tested. The forest floor, at 70 g/7.6-L pot, and the N and P fertilizers were added to the top of the planting pots without mixing. The forest floors and mineral soils differed by source in many of the chemical characteristics determined. Overall, seedling growth of Douglas-fir and western hemlock was better in the Klone and Shelton soils than in the Bunker and Vesta soils. Seedlings, especially those of western hemlock, grew better with than without forest floor. The N fertilizer reduced seedling growth of both species and, in some soils, reductions were more with than without forest floor. The P fertilizer improved seedling growth of both species in all soils and, with one exception, growth was much greater in the presence than in the absence of the forest floor. With both species, soil, forest-floor, and fertilization treatments affected concentrations and contents of the various shoot nutrients determined. The nutritional changes observed varied by nutrient and reflected differences in uptake of native and fertilizer nutrients, as well as changes in shoot dry weight. The results demonstrate the importance of the forest floor to growth and nutrition of Douglas-fir and western hemlock seedlings, especially when fertilizers are used.



1987 ◽  
Vol 17 (12) ◽  
pp. 1585-1595 ◽  
Author(s):  
Phillip Sollins ◽  
Steven P. Cline ◽  
Thomas Verhoeven ◽  
Donald Sachs ◽  
Gody Spycher

Fallen boles (logs) of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and western red cedar (Thujaplicata Donn) in old-growth stands of the Cascade Range of western Oregon and Washington were compared with regard to their physical structure, chemistry, and levels of microbial activity. Western hemlock and western red cedar logs disappeared faster than Douglas-fir logs, although decay rate constants based on density change alone were 0.010/year for Douglas-fir, 0.016/year for western hemlock, and 0.009/year for western red cedar. We were unable to locate hemlock or red cedar logs older than 100 years on the ground, but found Douglas-fir logs that had persisted up to nearly 200 years. Wood density decreased to about 0.15 g/cm3 after 60–80 years on the ground, depending on species, then remained nearly constant. Moisture content of logs increased during the first 80 years on the ground, then remained roughly constant at about 250% (dry-weight basis) in summer and at 350% in winter. After logs had lain on the ground for about 80 years, amounts of N, P, and Mg per unit volume exceeded the amount present initially. Amounts of Ca, K, and Na remained fairly constant throughout the 200-year time span that was studied (100-year time span for Na). N:P ratios converged toward 20, irrespective of tree species or wood tissue type. C:N ratios dropped to about 100 in the most decayed logs; net N was mineralized during anaerobic incubation of most samples with a C:N ratio below 250. The ratio of mineralized N to total N increased with advancing decay. Asymbiotic bacteria in fallen logs fixed about 1 kg N ha−1 year−1, a substantial amount relative to system N input from precipitation and dry deposition (2–3 kg ha−1 year−1).



1972 ◽  
Vol 2 (2) ◽  
pp. 111-120 ◽  
Author(s):  
S. Eis

Many trees in stands of Douglas fir, western hemlock and western red cedar on Vancouver Island were joined by functional grafts. In a partially cut stand, 45% of the stumps showed evidence of continued growth and half of these (23%) were still growing vigorously more than 22 years after logging. On experimentally detopped trees, growth extended several meters up the bole. Dominant trees usually supported the growth of the root system and lower boles of grafted suppressed trees.Translocation through grafts may partially explain the frequent stagnation and slow recovery of stands after thinning from above, and may be involved in the usually rapid increase of growth after thinning from below. It is probably a contributing factor in establishing dominance and determining mortality in overtopped trees. In species that graft freely, the use of silvicides in spacing and thinning treatments should be restricted to young stands before grafts are established.



1965 ◽  
Vol 43 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. W. Wallis ◽  
G. Reynolds

Root rot caused by Poria weirii Murr. occurred when healthy roots of Douglas fir came into contact with inoculum in infected roots of the previous stand. Mycelium grew ectotrophically on the bark of the Douglas fir roots, frequently well in advance of growth in the wood, and penetrated to living tissues directly through sound as well as injured bark. Spread of the disease to adjacent trees took place where healthy and diseased roots were in contact, the mycelium apparently spreading to only a very limited extent through natural soil. It was shown that mycelium could invade roots of trees felled for at least 12 months and Douglas fir heartwood that had been buried in soil for at least 12 months. Viable Poria mycelium was isolated from infected roots as small as 2 cm in diameter 11 years after the trees had been cut. While Douglas fir and western hemlock appeared to be quite susceptible to infection, western red cedar, red alder, and bigleaf maple showed considerable resistance.



Sign in / Sign up

Export Citation Format

Share Document