Lateral Root Pruning of Sitka Spruce and Western Hemlock Seedlings

1972 ◽  
Vol 2 (3) ◽  
pp. 223-227 ◽  
Author(s):  
S. Eis ◽  
J. R. Long

Roots of Sitka spruce (Picea sitchensis) and western hemlock (Tsugaheterophylla) seedlings were side pruned in nursery beds at semimonthly intervals to produce dense and compact root systems. Root pruning early in the growing season stimulated the growth of existing roots and also initiated new roots. The densest root systems were produced by pruning before the end of June. However, because of the short length of lateral roots on seedlings early in their second growing season, pruning equidistant between rows 18 cm apart was ineffective. The best compromise appeared to be to prune spruce at the beginning of July, and hemlock around the middle of July. Earlier pruning equidistant between rows can be effective on larger seedlings during their third growing season. If early pruning is carried out on 2 + 0 seedlings, a pruning distance of about 6 cm from the row is recommended.

2020 ◽  
Vol 93 (4) ◽  
pp. 545-556 ◽  
Author(s):  
W L Mason ◽  
T Connolly

Abstract Six experiments were established between 1955 and 1962 in different parts of northern and western Britain which used replicated randomized block designs to compare the performance of two species 50:50 mixtures with pure stands of the component species. The species involved were variously lodgepole pine (Pinus contorta Dougl.), Japanese larch (Larix kaempferi Lamb. Carr.), Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth.), Sitka spruce (Picea sitchensis Bong. Carr.) and western hemlock (Tsuga heterophylla Raf. Sarg.). The first four species are light demanding, while Sitka spruce is of intermediate shade tolerance and western hemlock is very shade tolerant: only Scots pine and silver birch are native to Great Britain. In three experiments (Bickley, Ceannacroc, Hambleton), the mixtures were of two light-demanding species, while at the other three sites, the mixture tested contained species of different shade tolerance. The experiments were followed for around 50 years, similar to a full rotation of even-aged conifer stands in Britain. Five experiments showed a tendency for one species to dominate in mixture, possibly reflecting differences in the shade tolerance or other functional traits of the component species. In the three experiments, the basal area of the mixtures at the last assessment was significantly higher than predicted based on the performance of the pure stands (i.e. the mixture ‘overyielded’). In two of these cases, the mixture had had a higher basal area than found in the more productive pure stand indicating ‘transgressive overyielding’. Significant basal area differences were generally more evident at the later assessment date. The exception was in a Scots pine: western hemlock mixture where greater overyielding at the earlier date indicated a nursing (‘facilitation’) effect. In the remaining experiments, the performance of the mixture conformed to predictions from the growth of the component species in pure stands. Taken overall, the results suggest that functional traits can be used to interpret the performance of mixtures but prediction of the outcome will require better understanding of the interplay between species and site characteristics plus the influence of silvicultural interventions.


1997 ◽  
Vol 12 (4) ◽  
pp. 115-121 ◽  
Author(s):  
Andris Eglitis ◽  
Paul E. Hennon

Abstract This study describes feeding damage by porcupines (Erethizon dorsatum) in precommercially thinned young growth stands of Sitka spruce (Picea sitchensis) and western hemlock (Tsuga heterophylla) on Mitkof Island in central southeast Alaska. We examined 641 trees from 54 sampling plots along transect lines in three 12 to 20 yr old stands. Porcupine feeding was monitored each spring and fall from 1985 to 1987. Four categories of feeding damage are described: complete girdling of the bole, partial girdling (bole scars), branch clipping, and "tasting wounds" (small basal bole scars). Sitka spruce, the primary crop tree in these thinned stands, sustained significantly higher damage (52% of trees affected) than western hemlock (26% of trees affected). Porcupine feeding was greater on taller than shorter Sitka spruce. Although only 8 of 59 trees initially girdled in 1985 were killed, many later sustained additional feeding damage. Following the 1987 season 3 yr after thinning, nearly 30% of the spruce and 14% of the western hemlock crop trees had been partially or completely girdled. Issues deserving future attention include the role of thinning in predisposing stands to porcupine damage, methods of population assessment, and mechanisms of host selection by porcupines. West. J. Appl. For. 12(4):115-121.


2020 ◽  
Vol 50 (2) ◽  
pp. 215-225
Author(s):  
Justin S. Crotteau ◽  
Annelise Z. Rue-Johns ◽  
Jeffrey C. Barnard

In southeast Alaska, United States, multiple-use forest management objectives include both timber production and wildlife habitat. Following stand-replacing disturbances such as clear-cutting, Sitka spruce (Picea sitchensis (Bong.) Carrière) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) naturally regenerate and competitively dominate resources, excluding understory biomass and biodiversity. Thinning may mitigate the effects of canopy closure and permit understory development, but evidence of the effect on understories 8–10 years after thinning is lacking. We report results 4–5 and 8–10 years after thinning experiments on the Tongass National Forest to demonstrate the effects of precommercial thinning (thinned versus control), stand age (15–25, 25–35, and 35–50 years), and weather on understory dynamics and Sitka black-tailed deer (Odocoileus hemionus sitkensis Merriam, 1898) forage availability. Stand density negatively affected understory biomass, whereas temperature and precipitation positively interacted to increase biomass. Thinning had an enduring effect on understories, with biomass at least twice as great in thinned versus unthinned stands through year 10. We identified compositional differences from thinning as stand age class increased. Deer forage responded similarly to biomass, but thinning-induced differences faded with increased winter snowfall scenarios, especially in older stands. This study aids the understanding of stand overstory and understory development following silvicultural treatments in the coastal temperate rain forest of Alaska and suggests management implications and applications for balancing objectives throughout the forest type.


2002 ◽  
Vol 32 (9) ◽  
pp. 1675-1684 ◽  
Author(s):  
Kim H Ludovici ◽  
Stanley J Zarnoch ◽  
Daniel D Richter

Because the root system of a mature pine tree typically accounts for 20–30% of the total tree biomass, decomposition of large lateral roots and taproots following forest harvest and re-establishment potentially impact nutrient supply and carbon sequestration in pine systems over several decades. If the relationship between stump diameter and decomposition of taproot and lateral root material, i.e., wood and bark, can be quantified, a better understanding of rates and patterns of sequestration and nutrient release can also be developed. This study estimated decomposition rates from in-situ root systems using a chronosequence approach. Nine stands of 55- to 70-year-old loblolly pine (Pinus taeda L.) that had been clear-cut 0, 5, 10, 20, 25, 35, 45, 55, and 60 years ago were identified on well-drained Piedmont soils. Taproot and lateral root systems were excavated, measured, and weighed. Although more than 50% of the total root mass decomposed during the first 10 years after harvest, field excavations recovered portions of large lateral roots (>5 cm diameter) and taproots that persisted for more than 35 and 60 years, respectively. Results indicate that decomposition of total root biomass, and its component parts, from mature, clear-cut loblolly pine stands, can be modeled with good precision as a function of groundline stump diameter and years since harvest.


2000 ◽  
Vol 30 (11) ◽  
pp. 1669-1681 ◽  
Author(s):  
M J Krasowski ◽  
J N Owens

The relationship between certain morphological characteristics of white spruce (Picea glauca (Moench) Voss) planting stock (STK) and post-planting seedling performance was evaluated. Root system size at planting, its expansion, and its capacity to conduct water during the first post-planting weeks were determined. These characteristics were related to the performance of STK planted on two forest sites and measured for three growing seasons and to the performance of seedlings grown in large wooden boxes buried in the soil outdoors for one growing season (grown without competition from other vegetation). The compared STK were (i) polystyroblock grown, (ii) polystyroblock grown with chemical root pruning, and (iii) peat-board grown with mechanical root pruning. After three growing seasons on forest sites, seedlings with mechanically pruned roots grew more above ground than did seedlings from polystyroblock containers. This difference in seedling growth performance was even more significant for seedlings grown in wooden boxes. Of these, the mechanically pruned seedlings grew more not only above the ground but they also produced larger root systems by the end of the first growing season. This was despite the initially significantly smaller root systems of mechanically pruned seedlings, compared with the other two STK. Early (5-7 weeks after planting) post-planting root expansion patterns in the three STK were significantly different, with the roots of mechanically pruned seedlings growing less than the roots in the other two STK. In spite of this, pressure-probe measured hydraulic conductivity and water flux through root systems increased during the first post-planting weeks in mechanically pruned seedlings while declining or changing little in the other two STK. It was concluded that root system size at planting and its early post-planting expansion did not relate well to the root system hydraulic properties or to the post-planting seedling growth performance.


1982 ◽  
Vol 60 (9) ◽  
pp. 1601-1605 ◽  
Author(s):  
E. Jennifer Christy ◽  
Phillip Sollins ◽  
James M. Trappe

Roots of western hemlock (Tsuga heterophylla) seedlings 1–5+ years old that had established naturally on logs in three states of decay or on mineral soil were compared for numbers and kinds of ectomycorrhizae. Mycobionts colonizing root systems included Cenococcum geophilum Fr., Piloderma croceum (Bres.) Erikss. & Hjorts., and four unidentified fungi distinguished by color and morphology. About half the seedlings surviving the first growing season (2–7 months) were nonmycorrhizal. Nonmycorrhizal seedlings were most frequent on the least decayed logs. However, mycotrophy appeared to be advantageous to hemlock; 1st-year mycorrhizal seedlings had shoots 60% longer and roots 47% longer than 1st-year nonmycorrhizal seedlings. All 2nd-year and older seedlings were mycorrhizal. The ability of western hemlock to survive the first growing season without mycorrhizae may contribute to its success in colonizing decaying logs, which may contain microsites devoid of effective ectomycorrhizal inocula.


1969 ◽  
Vol 9 (39) ◽  
pp. 445 ◽  
Author(s):  
RA Bray ◽  
JB Hacker ◽  
DE Byth

Root growth patterns of Glycine javanica, Setaria anceps, and Medicago sativa were studied by uptake of 32P from a sandy loam. Placement of isotope was through permanently positioned PVC conduit on a grid over a 90� quadrant of the root system. Detection of radioactivity was in in situ plant material. Lucerne had strong initial root development but was slow to form lateral roots. Glycine and Setaria had quite similar root systems although Setaria had more rapid vertical root development than Glycine. Both these species had strong lateral root systems. When a regression of minimum root length against time was calculated, lateral root growth was shown to be independent of depth and distance from the plant, suggesting that roots behave as if growing from a point source in random directions at a constant rate. This rate was the same for all species. There were also indications of strong vertical root systems in lucerne and Setaria.


1968 ◽  
Vol 44 (5) ◽  
pp. 12-13 ◽  
Author(s):  
S. Eis

The regeneration and growth of pruned roots of Douglas-fir seedlings were studied under nursery conditions. Root pruning did not decrease the height increment of seedlings. For the best development of dense and compact root systems, the bottom pruning should be done early in spring and the side pruning around the middle of June, on both sides of the row simultaneously.


1980 ◽  
Vol 10 (3) ◽  
pp. 250-256 ◽  
Author(s):  
W. C. Carlson ◽  
C. L. Preisig ◽  
L. C. Promnitz

Root systems of Piceasitchensis (Bong.) Carr. seedlings of natural, bareroot, and container origin were quantitatively analyzed to determine effects of seedling source on root system morphology, particularly lateral root orientation.Planted stock types were differentiated from natural seedlings on the basis of root system morphology. Container-induced effects on root system morphology were no greater than effects of bareroot cultural and planting practices. The data presented indicate that effects of culturing and planting on root system morphology are probably not severe enough to cause instability or growth retardation.


Sign in / Sign up

Export Citation Format

Share Document