Intraseasonal growth and nutrient composition of jack pine needles following fertilization

1981 ◽  
Vol 11 (3) ◽  
pp. 696-702 ◽  
Author(s):  
L. D. Morrow ◽  
V. R. Timmer

Seasonal responses in dry weight, nutrient concentration, and nutrient content of current and year-old needles of plantation jack pine (Pinusbanksiana Lamb.) were examined after treatment with factorial combinations of N, P, and K applied at 0 and 100 kg/ha, respectively. Nitrogen fertilization not only increased dry matter production and N composition of new needles, but also increased uptake of P, K, Ca, and Mg by prolonging the active growing season. Net translocation of N from old to new foliage occurred only in N-deficient trees at the peak of the growing season. Application of P and (or) K failed to increase growth and nutrient uptake of needles, except for P additions which induced luxury consumption of phosphorous. Diagnosis of foliar nutrient status indicated P and K as sufficient and N as deficient for growth in this stand.

1980 ◽  
Vol 2 (2) ◽  
pp. 162 ◽  
Author(s):  
JC Scanlan

The response of Asr~ebla (Mitchell grass) grasslands to burning was determined in relation to the amount of rainfall re- ceived in the following growing season. Nine A. lappacea and three A. pecrinata locations in north-west Queensland were studied [:or both species, fire tended to increase the number and total dry weight of new tillers, although the individual tillers were smaller. Very low and very high rainfall resulted in sub-optimal new tiller formation in unburnt areas of A. lappacea. 1,lowering and seed set was also stimulated by wildfires. The nitrogen content of new tillers in burnt treatments was higher than for those in unburnt treatments under low growing season rainfall and lower under high growing season rainfall. Dry matter production from burnt A, lappacea, relative to unburnt areas, decreased under low rainfall and increased under high rainfall. Burning at a time of high soil moisture resulted in higher dry matter production and higher nitrogen content than burning during the spring period when soil moisture was low. The ecological and management implications of these responses are discussed


2018 ◽  
Vol 55 (3) ◽  
pp. 386-394
Author(s):  
RICARDO GOENAGA

SUMMARYLittle is known about the adaptability of mamey sapote (Pouteria sapota) to acidic soils high in aluminum (Al). A 2 year field study was conducted to determine the effects of various levels of soil Al on dry matter production, stem diameter and nutrient concentration in tissues of four cultivars of mamey sapote. Soil Al treatments were statistically different for all variables measured in the study. Cultivars and the year × cultivar interaction were not significant; therefore, results were averaged over cultivars and years. Increasing soil Al concentration from 3.5 to 7.8 cmol kg−1 resulted in an increase in total dry weight, but higher soil Al concentrations resulted in dry weight and stem diameter reductions. Increments in soil Al resulted in a significant reduction in the concentration of leaf, stem and root calcium. The Al concentration in leaf and stem tissues was not significantly affected with increments in soil Al, but there was a significant decline in the concentration of Al in root tissue suggesting that mamey sapote may exclude Al from roots.


2013 ◽  
Vol 33 (6) ◽  
pp. 1257-1267
Author(s):  
Alessandro T. Campos ◽  
Alessandro V. Veloso ◽  
Enilson B. Silva ◽  
Tadayuki Yanagi Júnior ◽  
Matheus C. Mattioli

The goal of this study was to evaluate the nitrogen fertilization as deep litter for pigs in order to produce biomass and accumulate nutrients by the corn. A deep litter made of rice husk as organic compound, from a commercial pig farm during finishing phase, was used. After three consecutive batches of pigs, the deep litter was subjected to a maturation period of 50 days, and samples of this material were taken for analysis of agronomic value. The experimental design was completely randomized with five replicates. The treatments consisted of doses of 0, 75, 150 and 300mg dm-3 of N of deep litter, as well as an additional treatment with ammonium sulfate, with a dosage of 150mg dm-3 of N. After 45 days, corn plants were harvested in order to evaluate the total dry weight and nutrient concentrations of their aerial parts. Dry matter increases were found with more application of deep litter. Regarding control fertilization, the use of increasing dosages of deep litter allowed accumulation of K, reduced the availability of P, Ca, Mg, Zn and B and did not alter the concentrations of N, Cu, Fe and Mn.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


2010 ◽  
Vol 61 (5) ◽  
pp. 353 ◽  
Author(s):  
L. L. Burkitt ◽  
D. J. Donaghy ◽  
P. J. Smethurst

Pasture is the cheapest source of feed for dairy cows, therefore, dairy pastures in Australia are intensively managed to maximise milk production and profits. Although soil testing commonly suggests that soils used for dairy pasture production have adequate supplies of phosphorus (P), many Australian dairy farmers still apply fertiliser P, often by applying smaller rates more frequently throughout the year. This study was designed to test the hypotheses that more frequent, but lower rates of P fertiliser applied strategically throughout the growing season have no effect on dry matter production and P concentration in perennial ryegrass (Lolium perenne L.), when soil extractable P concentrations are above the critical value reported in the literature. Three field sites were established on rain-fed dairy pasture soils ranging in P sorption capacity and with adequate soil P concentrations for maximising pasture production. Results showed that applied P fertiliser had no effect on pasture production across the 3 sites (P > 0.05), regardless of rate or the season in which the P was applied, confirming that no P fertiliser is required when soil extractable P concentrations are adequate. This finding challenges the viability of the current industry practice. In addition, applying P fertiliser as a single annual application in summer did not compromise pasture production at any of the 3 sites (P > 0.05), which supports the current environmental recommendations of applying P during drier conditions, when the risk of surface P runoff is generally lower. The current results also demonstrate that the short-term cessation of P fertiliser application may be a viable management option, as a minimal reduction in pasture production was measured over the experimental period.


1975 ◽  
Vol 5 (4) ◽  
pp. 592-598 ◽  
Author(s):  
R. A. Woessner ◽  
C. B. Davey ◽  
B. E. Crabtree ◽  
J. D. Gregory

Nutrient content (P, K, Ca, Mg) of the aboveground tissue of a series of full-sib loblolly crosses was found to vary by genotype. Variability among and within seed sources is indicated for the ability to absorb Ca and Mg. Absorption of P and K was not found to be dependent on seed source, but the full-sib crosses differ. Good linear relationships were found between plant dry weight and weight of element but not between plant dry weight and percentage of element. Certain highly efficient crosses can be expected to be good producers of dry matter on sites low in available nutrients.


1969 ◽  
Vol 20 (3) ◽  
pp. 417 ◽  
Author(s):  
JH Silsbury

Lolium rigidum Gaud. and a summer-dormant and a non-dormant form of Lolium perenne L. were grown as seedling plants for 32 days in controlled environment cabinets at constant temperatures of either 10, 20, or 30°C and in all cases with a 16-hr photoperiod at a light intensity of 3600 lm ft-2. Sampling at 4-day intervals permitted the detailed examination of dry matter growth curves. Differences in total dry matter production were related to initial differences in seedling dry weight, and the general responses to temperature were similar for each ryegrass. Total dry matter production was greatest at 20°C and lowest at 10°. A temperature of 30° did not induce dormancy in the summer-dormant ryegrass but did depress growth. Relative growth rate fell with time at each temperature.


Weed Science ◽  
1986 ◽  
Vol 34 (6) ◽  
pp. 876-882 ◽  
Author(s):  
David T. Patterson ◽  
Ann E. Russell ◽  
David A. Mortensen ◽  
Robert D. Coffin ◽  
Elizabeth P. Flint

Texas panicum (Panicum texanumBuckl. # PANTE) is a native of the Southwest, now increasing as a weed throughout the southern United States, whereas wild proso millet (Panicum miliaceumL. # PANMI) is an introduced weed currently increasing in importance in the northern Midwest. In controlled-environment chambers, both species produced more tillers, greater leaf area, and more total dry weight at 30/24 C day/night (simulated growing season temperature in Georgia) than at 24/18 C (simulated growing season temperature in Minnesota). Texas panicum accumulated more dry matter at 30/24 C than did wild proso millet, while wild proso millet accumulated more dry matter at 24/18 C than did Texas panicum. When the two species were grown together, Texas panicum was the superior competitor at 30/24 C while wild proso millet was superior at 24/18 C. Exposure to short photoperiods at an intermediate temperature of 27/21 C accelerated flowering and limited vegetative growth in both species. In the range of photoperiods (10 to 16 h) examined, wild proso millet always flowered earlier and, consequently, produced less vegetative growth than Texas panicum. Its responses to temperature and photoperiod indicate that wild proso millet probably would be competitively inferior to Texas panicum and other adapted grass weeds in the southern United States.


1971 ◽  
Vol 49 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Klaus Steinbeck

Four random clones of American sycamore supplied with four concentrations of Hoagland's solution differed in their response to and interacted with treatment as far as height and diameter growth and total dry matter production in the first growing season were concerned. Varying nutrient intensity did not affect the time of the seasonal peak of height and diameter growth; better growth was maintained subsequent to the seasonal peak at the higher concentrations, however. The proportions of the trees in terms of dry-matter distribution and branching characteristics changed with nutrient concentration.


Sign in / Sign up

Export Citation Format

Share Document