Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine

1991 ◽  
Vol 21 (5) ◽  
pp. 626-634 ◽  
Author(s):  
D. Michael Swezy ◽  
James K. Agee

Old-growth Pinusponderosa Dougl. stands were surveyed at Crater Lake National Park to investigate potential accelerated mortality of large pines due to prescribed burning. Mortality of P. ponderosa greater than 22 cm diameter at breast height was higher in burned areas (19.5%) than in unburned areas (6.6%), and early-season burns had over 30% mortality. Mortality was associated with fire severity, as measured by scorch height and ground char, season of burning, and tree vigor. Pines of high, moderate, and low vigor were subjected to a prescribed burn in June; half of the trees had debris raked from tree bases as an additional treatment. Lethal heat loads (>60 °C) occurred in >75% of samples at the soil surface and at 5 cm soil depth, with duration exceeding 5 h. Burning reduced fine-root dry weight 50–75% 1 and 5 months after burning; raking and burning reduced fine-root dry weight more than burning alone after 1 month and had similar effects to burning after 5 months. A low-vigor tree that had been raked and burned died by the beginning of the fourth dry season after burning. Present fuel loads may be too high to burn during spring if old-growth P. ponderosa are to be protected.

2005 ◽  
Vol 35 (7) ◽  
pp. 1714-1722 ◽  
Author(s):  
Mark A Finney ◽  
Charles W McHugh ◽  
Isaac C Grenfell

Performance of fuel treatments in modifying behavior and effects of the largest wildfires has rarely been evaluated, because the necessary data on fire movement, treatment characteristics, and fire severity were not obtainable together. Here we analyzed satellite imagery and prescribed fire records from two Arizona wildfires that occurred in 2002, finding that prescribed fire treatments reduced wildfire severity and changed its progress. Prescribed burning in ponderosa pine forests 1–9 years before the Rodeo and Chediski fires reduced fire severity compared with untreated areas, despite the unprecedented 1860-km2 combined wildfire sizes and record drought. Fire severity increased with time since treatment but decreased with unit size and number of repeated prescribed burn treatments. Fire progression captured by Landsat 7 enhanced thematic mapper plus (ETM+) clearly showed the fire circumventing treatment units and protecting areas on their lee side. This evidence is consistent with model predictions that suggest wildland fire size and severity can be mitigated by strategic placement of treatments.


2004 ◽  
Vol 19 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Peter Z. Fulé ◽  
Jason L. Jerman ◽  
Peter J. Gould

Abstract Intensive thinning prescriptions intended to restore historic forest structure have produced heavy broadcast slash fuel loads in northwestern Arizona, sometimes leading to high tree mortality following prescribed burning. Mechanical slash compression with a D-6 bulldozer to reduce the severity of fire effects on residual trees was evaluated. Ten of 42 measured trees (24%) died within 2 years after burning of broadcast slash, and crown scorch of trees without slash compression treatment averaged 26%. In contrast, no trees died after burning of compressed slash and crown scorch averaged <3%, even though the total fuel loading was indistinguishable from the broadcast slash treatment. The practice of raking fuels away from the boles of old-growth trees also contributed to reduced scorch as compared to younger, unraked trees. Slash compression is a viable method of reducing mortality, offering ecological and economical tradeoffs. Benefits include the ability to reduce large quantities of slash, safeguarding old-growth tree survival while rapidly achieving open forest structure. Costs include paying for equipment operation as well as the possibility of damage to soils or plants. West. J. Appl. For. 19(3):149–153.


1999 ◽  
Vol 14 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Dayna M. Ayers ◽  
Donald J. Bedunah ◽  
Michael G. Harrington

Abstract In many western Montana ponderosa pine (Pinus ponderosa) stands, fire suppression and past selective logging of large trees have resulted in conditions favoring succession to dense stands of shade-tolerant, but insect- and disease-prone Douglas-fir (Pseudotsuga menziesii). Stand thinning and understory prescribed burning have been proposed as surrogates for pre-Euro-American settlement ecological processes and as potential treatments to improve declining forest condition and reduce the probability of severe wildfire. To test the effectiveness of these silvicultural techniques on overstory and understory conditions, research is ongoing in the Lick Creek Demonstration Site in the Bitterroot National Forest, Montana. Our research examined the response (mortality and vigor) of the dominant browse species, antelope bitterbrush (Purshia tridentata) and Scouler's willow (Salix scouleriana), to a ponderosa pine stand restoration project utilizing four treatments: (1) a shelterwood cut that removed 53% of the tree basal area; (2) a shelterwood cut with a low fuel consumption burn; (3) a shelterwood cut with a high fuel consumption burn; and (4) a control. Prior to the application of treatments, 1,856 bitterbrush and 871 willow were located, and their survival and vigor subsequently monitored for 2 yr posttreatment. The cut and burn treatments resulted in the greatest reduction in antelope bitterbrush and Scouler's willow density averaging 66% and 24% of pretreatment density, respectively. The shelterwood cut reduced bitterbrush and Scouler's willow density by 35% and 14%, respectively. On treatments receiving a shelterwood cut (all treatments but the control), but where antelope bitterbrush and Scouler's willow did not have fire damage, mortality was 45% for bitterbrush and 20% for willow, respectively. For bitterbrush and Scouler's willow plants that received fire damage, mortality was 72% for bitterbrush and 19% for willow. Although the burn and shelterwood harvest treatments resulted in reduced density of antelope bitterbrush and Scouler's willow 2 yr posttreatment, these treatments increased vigor of both species and created mineral seedbeds that may be necessary for establishment of seedlings. West. J. Appl. For. 14(3):137-143.


2008 ◽  
Vol 38 (7) ◽  
pp. 1797-1806 ◽  
Author(s):  
Chris P. Andersen ◽  
Donald L. Phillips ◽  
Paul T. Rygiewicz ◽  
Marjorie J. Storm

Root minirhizotron tubes were installed at two sites around three different age classes of ponderosa pine ( Pinus ponderosa Dougl. ex Laws.) to follow patterns of fine root (≤2 mm diameter) dynamics during a 4 year study. Both sites were old-growth forests until 1978, when one site was clear-cut and allowed to regenerate naturally. The other site had both intermediate-aged trees (50–60 years) and old-growth trees (>250 years old). Estimates of fine root standing crop were greatest around young trees and least around intermediate-aged trees. Root production was highly synchronized in all age classes, showing a single peak in late May – early June each year. Root production and mortality were proportional to standing root crop (biomass), suggesting that allocation to new root growth was proportional to root density regardless of tree age. The turnover index (mortality/maximum standing crop) varied from 0.62 to 0.89·year–1, indicating root life spans in excess of 1 year. It appears that young ponderosa pine stands have greater rates of fine root production than older stands but lose more fine roots each year through mortality. The results indicate that soil carbon may accumulate faster in younger than in older stands.


1993 ◽  
Vol 23 (10) ◽  
pp. 2236-2241 ◽  
Author(s):  
Timothy E. Paysen ◽  
Marcia G. Narog

Managers do not currently use prescribed fire in stands of canyon live oak (Quercuschrysolepis Liebm.) because it is highly susceptible to fire injury. A preliminary study investigating the effects of prescribed burning on this species was initiated on the San Bernardino National Forest in southern California. The purpose was to assess the feasibility of using thinning and prescribed burning to develop shaded fuel breaks in these stands. This paper addresses aboveground tree mortality inventoried 2 and 6 years after a prescribed burn. Aboveground tree stems were judged as live or dead (irrespective of root-zone sprouting). Fire caused approximately 50% mortality in DBH classes ≤15 cm and <10% in larger classes. Between the 2nd and 6th years after burning, tree mortality increased by only 3%. Our results suggest that prescribed fire can be used as a management tool in Q. chrysolepis stands and that tree mortality might be evaluated sooner than previously believed. More investigations are required to identify favorable conditions for prescribed burning in this species, as well as applicability for (i) degree of hazard reduction near the urban wildland interface, (ii) stand improvement by thinning small or crowded trees, and (iii) revitalizing wildlife habitat.


2014 ◽  
Vol 23 (7) ◽  
pp. 915 ◽  
Author(s):  
K. L. Shive ◽  
P. Z. Fulé ◽  
C. H. Sieg ◽  
B. A. Strom ◽  
M. E. Hunter

Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in ponderosa pine forests that burned in Arizona’s 2002 Rodeo–Chediski Fire using the Forest Vegetation Simulator Climate Extension, where initial stand structures were defined by pre-fire treatment and fire severity. Under extreme climate change, existing forests persisted for several decades, but shifted towards pinyon–juniper woodlands by 2104. Under milder scenarios, pine persisted with reduced growth. Prescribed burning at 10- and 20-year intervals resulted in basal areas within the historical range of variability (HRV) in low-severity sites that were initially dominated by smaller diameter trees; but in sites initially dominated by larger trees, the range was consistently exceeded. For high-severity sites, prescribed fire was too frequent to reach the HRV’s minimum basal area. Alternatively, for all stands under milder scenarios, uneven-aged management resulted in basal areas within the HRV because of its inherent flexibility to manipulate forest structures. These results emphasise the importance of flexible approaches to management in a changing climate.


2016 ◽  
Vol 25 (9) ◽  
pp. 946 ◽  
Author(s):  
Susana Zuloaga-Aguilar ◽  
Alma Orozco-Segovia ◽  
Oscar Briones ◽  
Enrique Jardel Pelaez

Prescribed burning is a management instrument applied to reduce the risk of fire and favour revegetation. Our objective was to generate information about the dynamics of post-fire regeneration via the soil seed bank (SSB), for fire management in subtropical forests. Samples taken at soil depths of 0–3cm, 3–6 cm and 6–10 cm before and 5 h after a prescribed burn showed that the fire immediately increased the number of germinable seeds and species in a Mexican pine–oak forest. Most of the germinable seeds were from species in genera with small seeds exhibiting physical or physiological dormancy, and that are tolerant or require fire for germination. Fire increased the number of germinable seeds during the wet season and the number of species was greater in the area control at 0–6-cm soil depth after 1 year; so that the fire modified the SSB seasonal pattern. Species diversity was not altered and was dominated by perennial herbaceous and shrub species both before and 2 years after the fire. Although fire completely eliminated the aboveground biomass of the understorey vegetation, the SSB can promote regeneration and persistence of understorey vegetation following a prescribed surface fire of low severity for the ecosystem studied.


2012 ◽  
Vol 21 (8) ◽  
pp. 1004 ◽  
Author(s):  
Susan J. Prichard ◽  
Maureen C. Kennedy

Fuel reduction treatments are increasingly used to mitigate future wildfire severity in dry forests, but few opportunities exist to assess their effectiveness. We evaluated the influence of fuel treatment, tree size and species on tree mortality following a large wildfire event in recent thin-only, thin and prescribed burn (thin-Rx) units. Of the trees that died within the first 3 years, most died in the first year regardless of treatment. First-year mortality was much higher in control and thin-only units (65 and 52%) than in thin-Rx units (37%). Cumulative third-year mortality followed a similar trend (78 and 64% in control and thin-only units) v. 43% in thin-Rx units. Percentage crown scorch is a strong predictor of mortality and is highly dependent on fuel treatment. Across all treatments, Pinus ponderosa had a lower probability of post-fire mortality than did Pseudotsuga menziesii. Finally, the probability of beetle attack on surviving trees was highest in large-diameter trees within thin-only treatments and lowest within thin-Rx treatments. This study contributes further evidence supporting the effectiveness of thinning and prescribed burning on mitigating post-fire tree mortality. We also present evidence that a combination of thinning and prescribed burning is associated with lower incidence of post-fire bark beetle attack.


2010 ◽  
Vol 40 (8) ◽  
pp. 1615-1626 ◽  
Author(s):  
Susan J. Prichard ◽  
David L. Peterson ◽  
Kyle Jacobson

To address hazardous fuel accumulations, many fuel treatments are being implemented in dry forests, but there have been few opportunities to evaluate treatment efficacy in wildfires. We documented the effectiveness of thinning and prescribed burning in the 2006 Tripod Complex fires. Recent fuel treatments burned in the wildfires and offered an opportunity to evaluate if two treatments (thin only and thin and prescribed burn) mitigated fire severity. Fire severity was markedly different between the two treatments. Over 57% of trees survived in thin and prescribed burn (thinRx) units versus 19% in thin only (thin) and 14% in control units. Considering only large-diameter trees (>20 cm diameter at breast height), 73% survived in thinRx units versus 36% and 29% in thin and control units, respectively. Logistic regression modeling demonstrates significant reductions in the log-odds probability of tree death under both treatments with a much greater reduction in thinRx units. Other severity measures, including percent crown scorch and burn severity index, are significantly lower in thinRx units than in thin and control units. This study provides strong quantitative evidence that thinning alone does not reduce wildfire severity but that thinning followed by prescribed burning is effective at mitigating wildfire severity in dry western forests.


Sign in / Sign up

Export Citation Format

Share Document