Fire regimes of western larch – lodgepole pine forests in Glacier National Park, Montana

1991 ◽  
Vol 21 (12) ◽  
pp. 1711-1720 ◽  
Author(s):  
Stephen W. Barrett ◽  
Stephen F. Arno ◽  
Carl H. Key

We conducted a detailed investigation of fire frequencies, patterns of fire spread, and the effects of fire on tree succession in the western larch – lodgepole pine (Larixoccidentalis – Pinuscontorta var. latifolia) forests west of the Continental Divide in Glacier National Park, Montana. Master fire chronologies for 1650 to the present were constructed based on tree fire scars and fire-initiated age-classes. Two kinds of primeval fire regimes were identified: (i) a mixed-severity regime ranging from nonlethal underburns to stand-replacing fires at mean intervals of 25–75 years and (ii) a regime of infrequent stand-replacing fires at mean intervals of 140–340 years. The former regime is characteristic of the North Fork Flathead valley and appears to be linked to a relatively dry climate and gentler topography compared with the McDonald Creek – Apgar Mountains and Middle Fork Flathead areas, where the latter fire regime predominates. Fire frequency in the entire North Fork study area was 20 fire years per century prior to 1935 and 2 per century after 1935. In the other two study areas it was 3–5 per century both before and after 1935. We suggest that fire suppression has altered the primeval fire regime in the North Fork, but not in the central and southern areas.

1994 ◽  
Vol 4 (2) ◽  
pp. 65 ◽  
Author(s):  
SW Barrett

A fire history investigation was conducted for three forest community types in the Absaroka Mountains of Yellowstone National Park, Wyoming. Master fire chronologies were based on fire-initiated age classes and tree fire scars. The area's major forest type, lodgepole pine (Pinus contorta Dougl. var. latifolia) ecosystems, revealed a predominant pattern of stand replacing fires with a 200 year mean interval-nearly half the length estimated in previous studies of lodgepole pine on less productive subalpine plateaus in YNP. High elevation whitebark pine (P. albicaulis Engelm.) forests had primarily stand replacing fires with >350 year mean intervals, but some stands near timberline also occasionally experienced mixed severity- or non-lethal underburns. Before nearly a century of effective fire suppression in Yellowstone's northern range, lower elevation Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco.) communities adjacent to Artemesia tridentata (Nutt.) grasslands experienced primarily non-lethal underburns at 30 year mean intervals. While short interval fire regimes have been altered by longterm fire suppression, fire exclusion apparently had only limited influence on the area's infrequently burned ecosystems prior to widespread stand replacement burning in 1988.


Author(s):  
Stephen Barrett ◽  
Stephen Arno

This study's goal is to document the fire history of the Lamar River drainage, southeast of Soda Butte Creek in the Absaroka Mountains of northeastern Yellowstone National Park (YNP). Elsewhere in YNP investigators have documented very long-interval fire regimes for lodgepole pine forests occurring on rhyolitic derived soils (Romme 1982, Romme and Despain 1989) and short-interval fire regimes for the Douglas-fir/grassland types (Houston 1973). No fire regime information was available for lodgepole pine forests on andesitic derived soils, such as in the Lamar drainage. This study will provide managers with a more complete understanding of YNP natural fire history, and the data will supplement the park's Geographic Information System (GIS) data base. Moreover, most of the study area was severely burned in 1988 and historical tree ring data soon will be lost to attrition of potential sample trees.


Author(s):  
Catherine Raley ◽  
Wayne Hubert ◽  
Stanley Anderson

At least 56 external threats which endanger the ecology of Glacier National Park (GNP) have been identified (National Park Service 1980). And while this is a park wide situation, Park managers have identified the North Fork Basin of the Flathead River as a region that is particularly sensitive to external land use activities, and as a unique unit within the Park. This area possesses substantial wilderness features (solitude, primitiveness), and provides habitat for threatened and endangered species such as the grizzly bear, gray wolf, and bald eagle, as well as other species of special interest like the westslope cutthroat and bull trout. We proposed a problem solving analysis to develop a cause and effect model for evaluating the impacts of external land use activities on the North Fork system within GNP. The cause and effect model would provide a qualitative assessment of the impacts on the natural resources of the Park, as well as on recreational quality. The specific objectives of this project were: 1. Identify the problem that exists in the North Fork region; 2. Identify the causes and effects of the environmental problem; 3. Identify tasks to help solve the problem; and 4. Provide a methodology which could be used to help organize and solve problems that the involved agencies might encounter.


1971 ◽  
Vol 49 (9) ◽  
pp. 1627-1636 ◽  
Author(s):  
Wayne D. Koterba ◽  
James R. Habeck

A series of 40 grassland communities occurring in the North Fork Valley in Glacier National Park was subjected to detailed phytosociological investigation. These grasslands are somewhat phytogeographically isolated from other northern Rocky Mountain grasslands in Washington, Idaho, and Montana in the United States, and from the Alberta fescue grasslands in Canada. Compositionally, the North Fork grasslands display features characteristic of grassland vegetation on both the west and east sides of the Continental Divide. The four major grass species achieving dominance in the North Fork Valley are Agropyron spicatum, Festuca idahoensis, Festuca scabrella, and Danthonia intermedia. Environmental factors possibly important in the distribution, composition, and maintenance of these grasslands are discussed.


2010 ◽  
Vol 58 (4) ◽  
pp. 300 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron P. Yates ◽  
Chris Brock ◽  
Vanessa C. Westcott

Few data are available concerning contemporary fire regimes and the responses of fire interval-sensitive vegetation types in semiarid woodland savanna landscapes of northern Australia. For a 10 300 km2 semiarid portion of Gregory National Park, in the present paper we describe (1) components of the contemporary fire regime for 1998–2008, on the basis of assessments derived from Landsat and MODIS imagery, (2) for the same period, the population dynamics, and characteristic fine-fuel loads associated with Acacia shirleyi Maiden (lancewood), an obligate seeder tree species occurring in dense monodominant stands, and (3) the fire responses of woody species, and fine-fuel dynamics, sampled in 41 plots comprising shrubby open-woodland over spinifex hummock grassland. While rain-year (July–June) rainfall was consistently reliable over the study period, annual fire extent fluctuated markedly, with an average of 29% being fire affected, mostly in the latter part of the year under relatively harsh fire-climate conditions. Collectively, such conditions facilitated short fire-return intervals, with 30% of the study area experiencing a repeat fire within 1 year, and 80% experiencing a repeat fire within 3 years. Fine fuels associated with the interior of lancewood thickets were characteristically small (<1 t ha–1). Fine fuels dominated by spinifex (Triodia spp.) were found to accumulate at rates equivalent to those observed under higher-rainfall conditions. Stand boundaries of A. shirleyi faired poorly under prevailing fire regimes over the study period; in 16 plots, juvenile density declined 62%, and adult stem density and basal area declined by 53% and 40%, respectively. Although the maturation (primary juvenile) period of A. shirleyi is incompletely known, assembled growth rate and phenology data indicated that it is typically >10 years. Of 133 woody species sampled, all trees (n = 26), with the exception of A. shirleyi, were resprouters, and 58% of all shrub species (n = 105) were obligate seeders, with observed primary juvenile periods <5 years. Assembled data generally supported observations made from other northern Australian studies concerning the responses of fire-sensitive woody taxa in rugged, sandstone-derived landscapes, and illustrated the enormous challenges facing ecologically sustainable fire management in such settings. Contemporary fire regimes of Gregory National Park are not ecologically sustainable.


Author(s):  
George Montopoli ◽  
Nick Visser ◽  
Hank Harlow

In 1994 and 1995, a high abundant winter snowfall at higher elevations appeared to result in long distance movement patterns by yellow-bellied marmot (Marmota flaviventris) over snow to lower, snowfree elevations where food was more available. As the snow melted and food became abundant, the marmots return to higher altitudes. In 1996, we continued to investigate the potential for migrational movements, by studying two study sites at different elevations in the North Fork of Cascade Canyon. Four marmots at each site were implanted with intraperitoneal tracking transmitters. Of eight marmots that were equipped with intraperitoneal transmitters, six demonstrated significant movements of greater than 0.5 km, one did not, and one most likely died as a result of predation before any movement could be observed. Of the six that demonstrated significant movements within the canyon, only one moved distances greater than 1 km. Marmots, after emerging from hibernation, migrated down canyon to snowfree areas as they become available. With progressive snow melt, most marmots move upward to higher elevations, but not to the extent originally expected. Instead, they moved to the first available habitat where food was obtainable, and other (dominant) marmots accepted their presence. This movement is exhibited in both males and females, yearlings and adults, and melanistic and normal colored marmots.


Author(s):  
William Romme ◽  
James Walsh

Whitebark pine (Pinus albicaulis) is a keystone species of upper subalpine ecosystems (Tomback et al. 2001), and is especially important in the high-elevation ecosystems of the northern Rocky Mountains (Arno and Hoff 1989). Its seeds are an essential food source for the endangered grizzly bear (Ursus arctos horribilis), particularly in the autumn, prior to winter denning (Mattson and Jonkel 1990, Mattson and Reinhart 1990, Mattson et al. 1992). In the Greater Yellowstone Ecosystem (GYE), biologists have concluded that the fate of grizzlies is intrinsically linked to the health of the whitebark pine communities found in and around Yellowstone National Park (YNP) (Mattson and Merrill 2002). Over the past century, however, whitebark pine has severely declined throughout much of its range as a result of an introduced fungus, white pine blister rust (Cronartium ribicola) (Hoff and Hagle 1990, Smith and Hoffman 2000, McDonald and Hoff 2001), native pine beetle (Dendroctonus ponderosae) infestations (Bartos and Gibson 1990, Kendall and Keane 2001), and, perhaps in some locations, successional replacement related to fire exclusion and fire suppression (Amo 2001). The most common historical whitebark pine ftre regimes are "stand-replacement", and "mixed­ severity" regimes (Morgan et al. 1994, Arno 2000, Arno and Allison-Bunnell2002). In the GYE, mixed-severity ftre regimes have been documented in whitebark pine forests in the Shoshone National forest NW of Cody, WY (Morgan and Bunting 1990), and in NE Yellowstone National Park (Barrett 1994). In Western Montana and Idaho, mixed fire regimes have been documented in whitebark pine communities in the Bob Marshall Wilderness (Keane et al. 1994), Selway-Bitterroot Wilderness (Brown et al. 1994), and the West Bighole Range (Murray et al.1998). Mattson and Reinhart (1990) found a stand­replacing fire regime on the Mount Washburn Massif, within Yellowstone National Park.


Sign in / Sign up

Export Citation Format

Share Document