scholarly journals Fire History of the Lamar River Drainage, Yellowstone National Park, Wyoming

Author(s):  
Stephen Barrett ◽  
Stephen Arno

This study's goal is to document the fire history of the Lamar River drainage, southeast of Soda Butte Creek in the Absaroka Mountains of northeastern Yellowstone National Park (YNP). Elsewhere in YNP investigators have documented very long-interval fire regimes for lodgepole pine forests occurring on rhyolitic derived soils (Romme 1982, Romme and Despain 1989) and short-interval fire regimes for the Douglas-fir/grassland types (Houston 1973). No fire regime information was available for lodgepole pine forests on andesitic derived soils, such as in the Lamar drainage. This study will provide managers with a more complete understanding of YNP natural fire history, and the data will supplement the park's Geographic Information System (GIS) data base. Moreover, most of the study area was severely burned in 1988 and historical tree ring data soon will be lost to attrition of potential sample trees.

1994 ◽  
Vol 4 (2) ◽  
pp. 65 ◽  
Author(s):  
SW Barrett

A fire history investigation was conducted for three forest community types in the Absaroka Mountains of Yellowstone National Park, Wyoming. Master fire chronologies were based on fire-initiated age classes and tree fire scars. The area's major forest type, lodgepole pine (Pinus contorta Dougl. var. latifolia) ecosystems, revealed a predominant pattern of stand replacing fires with a 200 year mean interval-nearly half the length estimated in previous studies of lodgepole pine on less productive subalpine plateaus in YNP. High elevation whitebark pine (P. albicaulis Engelm.) forests had primarily stand replacing fires with >350 year mean intervals, but some stands near timberline also occasionally experienced mixed severity- or non-lethal underburns. Before nearly a century of effective fire suppression in Yellowstone's northern range, lower elevation Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco.) communities adjacent to Artemesia tridentata (Nutt.) grasslands experienced primarily non-lethal underburns at 30 year mean intervals. While short interval fire regimes have been altered by longterm fire suppression, fire exclusion apparently had only limited influence on the area's infrequently burned ecosystems prior to widespread stand replacement burning in 1988.


Author(s):  
William Romme ◽  
James Walsh

Whitebark pine (Pinus albicaulis) is a keystone species of upper subalpine ecosystems (Tomback et al. 2001), and is especially important in the high-elevation ecosystems of the northern Rocky Mountains (Arno and Hoff 1989). Its seeds are an essential food source for the endangered grizzly bear (Ursus arctos horribilis), particularly in the autumn, prior to winter denning (Mattson and Jonkel 1990, Mattson and Reinhart 1990, Mattson et al. 1992). In the Greater Yellowstone Ecosystem (GYE), biologists have concluded that the fate of grizzlies is intrinsically linked to the health of the whitebark pine communities found in and around Yellowstone National Park (YNP) (Mattson and Merrill 2002). Over the past century, however, whitebark pine has severely declined throughout much of its range as a result of an introduced fungus, white pine blister rust (Cronartium ribicola) (Hoff and Hagle 1990, Smith and Hoffman 2000, McDonald and Hoff 2001), native pine beetle (Dendroctonus ponderosae) infestations (Bartos and Gibson 1990, Kendall and Keane 2001), and, perhaps in some locations, successional replacement related to fire exclusion and fire suppression (Amo 2001). The most common historical whitebark pine ftre regimes are "stand-replacement", and "mixed­ severity" regimes (Morgan et al. 1994, Arno 2000, Arno and Allison-Bunnell2002). In the GYE, mixed-severity ftre regimes have been documented in whitebark pine forests in the Shoshone National forest NW of Cody, WY (Morgan and Bunting 1990), and in NE Yellowstone National Park (Barrett 1994). In Western Montana and Idaho, mixed fire regimes have been documented in whitebark pine communities in the Bob Marshall Wilderness (Keane et al. 1994), Selway-Bitterroot Wilderness (Brown et al. 1994), and the West Bighole Range (Murray et al.1998). Mattson and Reinhart (1990) found a stand­replacing fire regime on the Mount Washburn Massif, within Yellowstone National Park.


2020 ◽  
Vol 9 (5) ◽  
pp. 333
Author(s):  
Nicole C. Inglis ◽  
Jelena Vukomanovic

Fire management in protected areas faces mounting obstacles as climate change alters disturbance regimes, resources are diverted to fighting wildfires, and more people live along the boundaries of parks. Evidence-based prescribed fire management and improved communication with stakeholders is vital to reducing fire risk while maintaining public trust. Numerous national fire databases document when and where natural, prescribed, and human-caused fires have occurred on public lands in the United States. However, these databases are incongruous and non-standardized, making it difficult to visualize spatiotemporal patterns of fire and engage stakeholders in decision-making. We created interactive decision analytics (“VISTAFiRe”) that transform fire history data into clear visualizations of the spatial and temporal dimensions of fire and its management. We demonstrate the utility of our approach using Big Cypress National Preserve and Everglades National Park as examples of protected areas experiencing fire regime change between 1980 and 2017. Our open source visualizations may be applied to any data from the National Park Service Wildland Fire Events Geodatabase, with flexibility to communicate shifts in fire regimes over time, such as the type of ignition, duration and magnitude, and changes in seasonal occurrence. Application of the tool to Everglades and Big Cypress revealed that natural wildfires are occurring earlier in the wildfire season, while human-caused and prescribed wildfires are becoming less and more common, respectively. These new avenues of stakeholder communication are allowing the National Park Service to devise research plans to prepare for environmental change, guide resource allocation, and support decision-making in a clear and timely manner.


2006 ◽  
Vol 15 (3) ◽  
pp. 433 ◽  
Author(s):  
William L. Baker

Reconstructing fire regimes of the past can provide a valuable frame of reference for understanding the impact of human land uses on contemporary fire and forest structure, but methods for reconstructing past fire regimes are under re-evaluation. In the present article, a common method of characterizing surface fire regimes, using composite fire intervals from fire scars, is shown to significantly underestimate the length of the fire rotation and population mean fire interval in Grand Canyon landscapes where these parameters are known. Also, the evidence and interpretation that past high-severity fire was uncommon in ponderosa pine landscapes in Grand Canyon National Park are challenged. Together, these two concerns mean that an alternative characterization of the fire regime, which has very different implications, cannot be excluded. Management aimed at lowering fire risk, as a means of restoration, does not presently have a sound scientific basis, if it uses the composite fire interval as a measure of the fire regime or is based on fire history research that lacks adequate analysis of past high-severity fire.


Author(s):  
Tania Schoennagel ◽  
Monica Turner

Many scientists predict that due to the quick response of fire regimes to changes in climate (Flannigan et al. 1998; Stocks et al. 1998), the most rapid and extensive effects of climate change will be mediated by altered disturbance regimes (Davis and Botkin 1985; Franklin et al. 1992; Graham et al. 1990; Weber and Flannigan 1997). Under climate scenarios expected for C02 doubling, Price and Rind (1994) predict a 44% increase in lightning-caused fires and a 78% increase in total area burned for the U.S. Although regional climate scenarios are still subject to a fairly high degree of uncertainty, regional predictions for Yellowstone National Park (YNP) estimate an increase in aridity (Balling et al. 1992) and mean July temperatures (Bartlein et al. 1997), suggesting that fire frequencies could significantly increase in YNP over the next century. While several models have simulated the response of western coniferous forests to altered fire regimes (Baker et al. 1991; Gardner et al. 1996; Keane et al. 1990; Keane et al. 1995; Romme and Turner 1991), little empirical work on the successional responses to different intervals of stand­replacing fire has been incorporated, and remains a critical element in predicting the effects of climatically altered disturbance regimes in forested landscapes. Previous work in Yellowstone has considered the effects of fire severity, fire size and level of serotiny in explaining initial pathways of postfrre succession across the Yellowstone landscape (Turner et al. 1994; Turner et al. 1997). The effects of the third component of the disturbance regime, fire interval, remains largely unexplored, and represents a fundamental link in predicting potential effects of climate change on the Yellowstone landscape. The specific objectives of our research, therefore, were to assess: Are there a significantly different successional responses following different intervals of stand-replacing fire in Yellowstone National Park? Because serotiny exerts a strong influence on initial post-fire succession in Yellowstone (characterized by variation in lodgepole pine densities), we also sought to track stand-level changes in serotiny over time. In order to flesh out a possible mechanism for why postfrre succession may vary depending upon the age at which the stand burns we asked: What is the temporal variation in lodgepole pine serotiny within the park?


2021 ◽  
Author(s):  
Nikos Koutsias ◽  
Anastasia Karamitsou ◽  
Foula Nioti ◽  
Frank Coutelieris

<p>Plant biomes and climatic zones are characterized by a specific type of fire regime which can be determined from the history of fires in the area and it is a synergy mainly of the climatic conditions and the functional characteristics of the types of vegetation. They correspond also to specific phenology types, a feature that can be useful for various applications related to vegetation monitoring, especially when remote sensing methods are used. Both the assessment of fire regime from the reconstruction of fire history and the monitoring of post-fire evolution of the burned areas can be studied with satellite remote sensing based on satellite time series images. The free availability of (i) Landsat satellite imagery by US Geological Survey (USGS, (ii) Sentinel-2 satellite imagery by ESA and (iii) MODIS satellite imagery by NASA / USGS allow low-cost data acquisition and processing (eg 1984-present) which otherwise would require very high costs. The purpose of this work is to determine the fire regime as well as the patterns of post-fire evolution of burned areas in selected vegetation/climate zones for the entire planet by studying the phenology of the landscape with time series of satellite images. More specifically, the three research questions we are negotiating are: (i) the reconstruction of the history of fires in the period 1984-2017 and the determination of fire regimes with Landsat and Sentinel-2 satellite data , (ii) the assessment of pre-fire phenological pattern of vegetation and (iii) the monitoring and comparative evaluation of post-fire evolution patterns of the burned areas.</p><p><strong>Acknowledgements</strong></p><p>This research has been co-financed by the Operational Program "Human Resources Development, Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds.</p><p> </p>


1991 ◽  
Vol 21 (12) ◽  
pp. 1711-1720 ◽  
Author(s):  
Stephen W. Barrett ◽  
Stephen F. Arno ◽  
Carl H. Key

We conducted a detailed investigation of fire frequencies, patterns of fire spread, and the effects of fire on tree succession in the western larch – lodgepole pine (Larixoccidentalis – Pinuscontorta var. latifolia) forests west of the Continental Divide in Glacier National Park, Montana. Master fire chronologies for 1650 to the present were constructed based on tree fire scars and fire-initiated age-classes. Two kinds of primeval fire regimes were identified: (i) a mixed-severity regime ranging from nonlethal underburns to stand-replacing fires at mean intervals of 25–75 years and (ii) a regime of infrequent stand-replacing fires at mean intervals of 140–340 years. The former regime is characteristic of the North Fork Flathead valley and appears to be linked to a relatively dry climate and gentler topography compared with the McDonald Creek – Apgar Mountains and Middle Fork Flathead areas, where the latter fire regime predominates. Fire frequency in the entire North Fork study area was 20 fire years per century prior to 1935 and 2 per century after 1935. In the other two study areas it was 3–5 per century both before and after 1935. We suggest that fire suppression has altered the primeval fire regime in the North Fork, but not in the central and southern areas.


Author(s):  
Stephen Barrett ◽  
Stephen Arno

In this paper we discuss the first phase of a 3-year effort to document the fire history of Yellowstone National Park's (YNP) Lamar River drainage southeast of Soda Butte Creek. The overall goal of the study was to provide managers with a more complete understanding of YNP natural fire regimes. Specific objectives were: 1. Determine natural (pre-1900) fire periodicities, severities, burning patterns, and post-fire succession within the study area's major forest types (Douglas fir/ grassland, lodgepole pine/subalpine fir/ spruce, whitebark pine/lodgepole pine/ subalpine fir, and whitebark pine/subalpine fir timberline habitats); 2. document and map the pre-1988 forest age-class mosaic; and 3. digitize the age-class mosaic map for the YNP's GIS data base. This study is considered especially timely because the 1988 fires destroyed much evidence of area fire history. Our sampling in 1989 focused on a 24,000 ha area encompassing the Cache Creek drainage, which was severely burned in 1988. The forest age-class mosaic was sampled by increment boring and sawing fire scar samples from old trees (Arno and Sneck 1977, Barrett and Arno 1988). Aerial photographs were used to map the pre-1988 forest age-class mosaic; Data was digitized for the park's GIS data base. Information from the YNP fire atlas also was useful in interpreting fire patterns during the post-1900 period.


Author(s):  
W. Romme ◽  
J. Yavitt ◽  
D. Knight ◽  
J. Fedders

A research project was initiated in 1980 to study the effects of outbreaks of the mountain pine beetle (Dendroctonus ponderosae) on lodgepole pine forests (Pinus contorta spp. latifolia) in Yellowstone National Park and surrounding areas. This native bark beetle recently has killed millions of trees over thousands of square kilometers in the central and northern Rocky Mountains. Major outbreaks first occurred in Grand Teton National Park in the 1950's and in Yellowstone National Park in the 1960's. The outbreak in Yellowstone Park is still spreading.


2021 ◽  
pp. 1-17
Author(s):  
Christopher M. Schiller ◽  
Cathy Whitlock ◽  
Sabrina R. Brown

Abstract Changes in climate and fire regime have long been recognized as drivers of the postglacial vegetation history of Yellowstone National Park, but the effects of locally dramatic hydrothermal activity are poorly known. Multi-proxy records from Goose Lake have been used to describe the history of Lower Geyser Basin where modern hydrothermal activity is widespread. From 10,300 cal yr BP to 3800 cal yr BP, thermal waters discharged into the lake, as evidenced by the deposition of arsenic-rich sediment, fluorite mud, and relatively high δ13Csediment values. Partially thermal conditions affected the limnobiotic composition, but prevailing climate, fire regime, and rhyolitic substrate maintained Pinus contorta forest in the basin, as found throughout the region. At 3800 cal yr BP, thermal water discharge into Goose Lake ceased, as evidenced by a shift in sediment geochemistry and limnobiota. Pollen and charcoal data indicate concurrent grassland development with limited fuel biomass and less fire activity, despite late Holocene climate conditions that were conducive to expanded forest cover. The shift in hydrothermal activity at Goose Lake and establishment of the treeless geyser basin may have been the result of a tectonic event or change in hydroclimate. This record illustrates the complex interactions of geology and climate that govern the development of an active hydrothermal geo-ecosystem.


Sign in / Sign up

Export Citation Format

Share Document