marmota flaviventris
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 5)

H-INDEX

24
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 251
Author(s):  
Ziqiang Bao ◽  
Cheng Li ◽  
Cheng Guo ◽  
Zuofu Xiang

The Himalayan marmot (Marmota himalayana) mainly lives on the Qinghai-Tibet Plateau and it adopts multiple strategies to adapt to high-altitude environments. According to the principle of convergent evolution as expressed in genes and traits, the Himalayan marmot might display similar changes to other local species at the molecular level. In this study, we obtained high-quality sequences of the CYTB gene, CYTB protein, ND3 gene, and ND3 protein of representative species (n = 20) from NCBI, and divided them into the marmot group (n = 11), the plateau group (n = 8), and the Himalayan marmot (n = 1). To explore whether plateau species have convergent evolution on the microscale level, we built a phylogenetic tree, calculated genetic distance, and analyzed the conservation and space structure of Himalayan marmot ND3 protein. The marmot group and Himalayan marmots were in the same branch of the phylogenetic tree for the CYTB gene and CYTB protein, and mean genetic distance was 0.106 and 0.055, respectively, which was significantly lower than the plateau group. However, the plateau group and the Himalayan marmot were in the same branch of the phylogenetic tree, and the genetic distance was only 10% of the marmot group for the ND3 protein, except Marmota flaviventris. In addition, some sites of the ND3 amino acid sequence of Himalayan marmots were conserved from the plateau group, but not the marmot group. This could lead to different structures and functional diversifications. These findings indicate that Himalayan marmots have adapted to the plateau environment partly through convergent evolution of the ND3 protein with other plateau animals, however, this protein is not the only strategy to adapt to high altitudes, as there may have other methods to adapt to this environment.


2020 ◽  
Vol 101 (3) ◽  
pp. 658-669
Author(s):  
Melissa J Reynolds-Hogland ◽  
Alan B Ramsey ◽  
August T Seward ◽  
Kristine L Pilgrim ◽  
Cory Engkjer ◽  
...  

Abstract We evaluated the response of a remnant population of yellow-bellied marmots (Marmota flaviventris) to targeted habitat enhancement in an ecological system that had been degraded during ~100 years of intensive livestock management, including marmot eradication. We used capture-recapture data and a novel use of a multistate framework to evaluate geographic expansion of the marmot population pre- and post-habitat enhancement. We also estimated age-structured survival, reproduction, and sex ratios. The marmot population appeared to respond positively to new habitat opportunities created by habitat enhancement: the number of marmots captured increased from three marmots pre-habitat enhancement to 54 (28 adults and yearlings, 26 young) post-habitat enhancement at the end of the study. Marmots expanded geographically by transitioning into habitat-enhanced areas, and adult females occupied and reproduced in all habitat-enhanced areas. The sex ratio of the young population in 2019 was strongly female-biased, which may have been influenced by poor body condition of breeding females owing to unusually prolonged snow cover that year. Adult and yearling survival were within the range of that reported for colonial adults and yearlings in Colorado. Our results suggest that active habitat enhancement can assist in the recovery of marmot populations in systems where marmots historically existed.


Author(s):  
Emily M. Cravens ◽  
Jay S. Kirkwood ◽  
Lisa M. Wolfe ◽  
Rebecca A. Packer ◽  
Lawrence R. Whalen ◽  
...  

2019 ◽  
Vol 79 (3) ◽  
pp. 285
Author(s):  
Jennifer K. Frey ◽  
Erik A. Beever ◽  
Charles D. Hathcock ◽  
Robert R. Parmenter ◽  
Marie L. Westover

2018 ◽  
Vol 33 (4) ◽  
pp. 388-401 ◽  
Author(s):  
Emily A. Mulawa ◽  
Jay S. Kirkwood ◽  
Lisa M. Wolfe ◽  
Samantha J. Wojda ◽  
Jessica E. Prenni ◽  
...  

Hibernation is a naturally occurring model for studying diseases such as obesity and osteoporosis. Hibernators, marmots (Marmota flaviventris) among them, are able to nearly double their body mass by increasing fat stores prior to hibernation without the negative consequences of obesity. They are also physically inactive for extended periods of time without experiencing negative effects on the skeleton. The endocannabinoid system is involved in modulating neural signaling, circannual rhythms, behavior, appetite, thermogenesis, and bone and energy metabolism. These systems are also altered to maintain homeostasis during hibernation. This study aims to better understand the involvement of the endocannabinoid system in the regulation of physiological processes during hibernation by quantifying the seasonal variation of endocannabinoids and endocannabinoid-like ligands in both active and hibernating marmots. We hypothesized that there would be significant changes in endocannabinoid concentrations at the tissue level in marmots between active and hibernating states. Concentrations were measured in brain, serum, brown adipose tissue, white adipose tissue, bone marrow, cortical bone, and trabecular bone using microflow chromatography coupled with tandem quadrupole mass spectrometry. Significant changes were found, such as a 30-fold decrease in 2-arachidonoyl glycerol (2-AG) in cortical bone during hibernation. Many endocannabinoid and endocannabinoid-like ligands decreased in brown adipose tissue, white adipose tissue, and cortical bone, while several ligands increased in bone marrow. This result supports our hypothesis and suggests the possibility of a peripherally controlled shift in energy metabolism, reduction in bone metabolism, and suppression of the immune system during hibernation.


BIOS ◽  
2017 ◽  
Vol 88 (4) ◽  
pp. 135-143
Author(s):  
Zachary Butler ◽  
Dominick Gamba ◽  
Stephen Morris ◽  
Jennifer Zahratka ◽  
Erin M. Lehmer

Sign in / Sign up

Export Citation Format

Share Document