Distribution and abundance of coarse woody debris in a managed forest landscape of the central Appalachians

1994 ◽  
Vol 24 (7) ◽  
pp. 1317-1329 ◽  
Author(s):  
Brian C. McCarthy ◽  
Ronald R. Bailey

Coarse woody debris (CWD) is integral to the functioning and productivity of forested ecosystems. Standing snags and large logs on the forest floor affect soil processes, soil fertility, hydrology, and wildlife microhabitat. Few data are available pertaining to the distribution and abundance of CWD in the managed hardwood forests of the central Appalachians. We surveyed 11 stands, at various stages of development (succession) after clear-cutting (<2, 15–25, 65–90, >100 years old), to evaluate the density, volume, and biomass of trees, snags, and logs under the local forest management regime. As expected, density, volume, and biomass of CWD (stems ≥2.5 cm diameter) were greatest in young stands (<2 years old) immediately following clear-cutting; the vast majority of CWD existed as relatively labile, small-diameter, low decay state logging slash. Young stands retained a few large logs in advanced decay states but observations suggest that these elements were often disturbed (i.e., crushed) by logging equipment during the harvest process. Crushed logs do not function ecologically in the same capacity as large intact logs. A marked decline in CWD was observed in young pole stands (15–25 years old) as slash decomposed. These stands were characterized by a high density of young hardwood stump sprouts in the overstory while maintaining a moderate amount of CWD in middle size and decay states on the forest floor. More mature hardwood stands (65–90 years old) generally exhibited a decrease in live-stem density and an increase in basal area, accompanied by a slight increase in CWD. Commercial thinning presumably limits the contribution of large CWD to the forest floor. This was most clearly evident in the oldest stands (>100 years old) where large CWD was not widely observed. A striking feature across all stands was the near absence of logs in large size classes (>65 cm diameter) and a paucity of logs in mid to late decay stages. We discuss our data in the context of hardwood forest structure and management in the central Appalachians.

1994 ◽  
Vol 24 (9) ◽  
pp. 1811-1817 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Carbon dioxide evolution rates for downed logs (coarse woody debris) and the forest floor were measured in a temperate, old-growth rain forest in Olympic National Park, Washington, using the soda lime trap method. Measurements were taken every 4 weeks from October 22, 1991, to November 19, 1992. Respiration rates for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.), logs were determined for decay classes 1–2, 3, and 5 in two diameter classes. Overall, western hemlock logs respired at a rate 35% higher (4.37 g CO2•m−2•day−1) than Douglas-fir logs (3.23 g CO2•m−2•day−1). Respiration rates for decay class 1–2 logs of both species were similar to decay class 5 logs (4.46 and 4.07 g CO2•m−2•day−1, respectively), but decay class 3 logs respired at a lower rate (3.23 g CO2•m−2•day−1). Seasonal patterns of respiration rates occurred, particularly for decay class 1 and 2 western hemlock logs where monthly averages ranged from a low of 2.67 g CO2•m−2•day−1 in February 1992 to a high of 8.30 g CO2•m−2•day−1 in September 1992. Rates for decay class 1–2 western hemlock logs were greater than those from the forest floor, which ranged from 3.42 to 7.13 g CO2•m−2•day−1. Respiration rates were depressed in late July and August compared with fall and spring owing to the summer drought characteristic of the Pacific Northwest. Large-diameter western hemlock logs in decay class 1–2 had higher respiration rates than small-diameter logs, whereas large-diameter decay class 3 western hemlock logs had lower respiration rates than small-diameter logs.


2011 ◽  
Vol 7 (4) ◽  
pp. 168-173 ◽  
Author(s):  
A-Ram Yang ◽  
Nam Jin Noh ◽  
Sue Kyoung Lee ◽  
Tae Kyung Yoon ◽  
Choonsig Kim ◽  
...  

2006 ◽  
Vol 36 (2) ◽  
pp. 460-466 ◽  
Author(s):  
Leslie R Paul ◽  
Bill K Chapman ◽  
Christopher P Chanway

Tuberculate ectomycorrhizae (TEM) have been observed in decaying coarse woody debris (CWD) and may play a role in the nitrogen economy of forests. This study evaluates the occurrence of Suillus tomentosus (Kauff.) Singer, Snell and Dick TEM within CWD in Pinus contorta Dougl. ex Loud. var. latifolia Engelm. stands and relates their occurrence to CWD and soil characteristics as well as stand age. TEM were more abundant in the basal end of CWD incorporated in the forest floor than in the middle and top portions. Tubercle abundance was positively correlated with moisture and texture of CWD, degree of incorporation of CWD into the forest floor, and the amount of roots within CWD. There were significantly more TEM in CWD in young stands than in old stands and on sites with granitic soils than on sites with basaltic soils. Highly degraded CWD that is well incorporated in the forest floor appears to be an important microhabitat for the formation and occurrence of TEM.


2007 ◽  
Vol 85 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Nicole J. Fenton ◽  
Catherine Béland ◽  
Sylvie De Blois ◽  
Yves Bergeron

Boreal forest bryophyte communities are made up of distinct colonies of feathermosses that cover the forest floor. In some black spruce ( Picea mariana (Mill.) BSP) boreal forests, Sphagnum spp. establish colonies on the forest floor 30–40 years after the feathermosses, and ultimately expand to dominate the community. The mechanisms that permit the Sphagnum spp. to establish and expand are unknown. The objectives of this study were to examine the establishment and expansion substrates of Sphagnum spp., and the conditions correlated with colony expansion. Forty colonies, in six stands, of Sphagnum capillifolium (Ehrh.) Hedw. were dissected to determine their substrates, and the environmental conditions in which all colonies present were growing were measured. Coarse woody debris was the dominant establishment and early expansion substrate for Sphagnum capillifolium colonies. With age as the control factor, large colonies showed a significant partial correlation with canopy openness, and there were fewer individuals per cm3 in large colonies than there were in small colonies. These results suggest that Sphagnum establishment in these communities is dependent on the presence of coarse woody debris, and expansion is linked to the stand break-up, which would allow an increase in light intensity, and rainfall to reach the colony. Consequently the community change represented by Sphagnum establishment and expansion is initially governed by a stochastic process and ultimately by habitat availability and species competition.


2012 ◽  
Vol 8 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Suin Ko ◽  
Yowhan Son ◽  
Nam Jin Noh ◽  
Tae Kyung Yoon ◽  
Choonsig Kim ◽  
...  

1995 ◽  
Vol 3 (3-4) ◽  
pp. 230-261 ◽  
Author(s):  
Phillip G. deMaynadier ◽  
Malcolm L. Hunter Jr.

Questions about the compatibility of forest harvesting practices and conservation of biological diversity are largely driven by concerns that habitat quality for many species may be degraded in intensively managed forest landscapes. We review the literature on relationships between common forest harvesting practices and the distribution and abundance of amphibians, a group that has attracted considerable attention in recent years because of their potential ecological importance in forest ecosystems and because of reports of widespread population declines. Clear-cut harvesting generally has negative short-term impacts on local amphibian populations, especially salamanders. An analysis of the results of 18 studies that examined the effects of clear-cutting on amphibians yielded a 3.5-fold median difference in abundance of amphibians on controls over clear-cuts. However, research on the influence of forest age suggests that the long-term effects of forest harvesting on amphibians are variable, and for many species these effects can be mitigated if regeneration practices leave adequate microhabitat structure intact. In contrast, long-term effects can be significant in forest plantations, which are often associated with intensive site preparations and stand management practices that modify levels of coarse woody debris and other microhabitats. Other forest practices reviewed for their effect on amphibians include prescribed fire, logging roads, and streamside harvesting. We discuss problems commonly encountered in the experimental design and measurement of forest amphibian populations, including a notable lack of pretreatment data, and outline several aspects of amphibian–forestry relationships in need of further research. Management recommendations relevant to conserving upland and riparian zone amphibian habitat during forest harvesting are offered.Key words: amphibians, clear-cutting, coarse woody debris, forest management, logging roads, plantations, prescribed fire, riparian, succession.


2000 ◽  
Vol 30 (7) ◽  
pp. 1148-1155 ◽  
Author(s):  
Masamichi Takahashi ◽  
Yoshimi Sakai ◽  
Reiko Ootomo ◽  
Masao Shiozaki

Forest floor microsite conditions and tree seedling establishment were studied at an old-growth Picea-Abies forest in Hokkaido Island, northern Japan. Tree seedlings were established abundantly on coarse woody debris (CWD) from decay class III, a class indicating moderate decay, to class V, the most advanced decay class. The height-class distribution of tree seedlings indicates that the recruitment of Picea glehnii (Fr. Schm.) Masters and Picea jezoensis (Sieb. et Zucc.) Carr. seedlings on CWD started on decay class II and was mostly restricted to CWD decay class III. Seedlings of Abies sachalinensis (Fr. Schm.) Masters also favored establishment on CWD but had a wide adaptability to most of the microsites. Although CWD functioned as a suitable seedbed, water extracts from CWD were acidic and had quite low mineral nutrient concentrations. Tree seedling establishment did not necessarily require high levels of nutrient content in microsites. Although the forest floor was largely covered by CWD, with 2056 m2·ha-1 of the total projected area covered by CWD, CWD decay class III covered only 366 m2·ha-1 of the forest floor, indicating that CWD as a functioning seedbed is limited by time and space on the forest floor.


2002 ◽  
Vol 32 (12) ◽  
pp. 2094-2105 ◽  
Author(s):  
Shawn Fraver ◽  
Robert G Wagner ◽  
Michael Day

We examined the dynamics of down coarse woody debris (CWD) under an expanding-gap harvesting system in the Acadian forest of Maine. Gap harvesting treatments included 20% basal area removal, 10% basal area removal, and a control. We compared volume, biomass, diameter-class, and decay-class distributions of CWD in permanent plots before and 3 years after harvest. We also determined wood density and moisture content by species and decay class. Mean pre-harvest CWD volume was 108.9 m3/ha, and biomass was 23.22 Mg/ha. Both harvesting treatments increased the volume and biomass of non-decayed, small-diameter CWD (i.e., logging slash), with the 20% treatment showing a greater increase than the 10% treatment and both treatments showing greater increases than the control. Post-harvest reduction of advanced-decay CWD due to mechanical crushing was not evident. A mean of 18.48 m3 water/ha (1.85 L/m2) demonstrates substantial water storage in CWD, even during an exceptionally dry sampling period. The U-shaped temporal trend in CWD volume or biomass seen in even-aged stands may not apply to these uneven-aged stands; here, the trend is likely more complex because of the superimposition of small-scale natural disturbances and repeated silvicultural entries.


Sign in / Sign up

Export Citation Format

Share Document