Gap junctions and tumour progression

2002 ◽  
Vol 80 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Christian CG Naus

Gap junctional intercellular communication has been implicated in growth control and differentiation. The mechanisms by which connexins, the gap junction proteins, act as tumor suppressors are unclear. In this review, several different mechanisms are considered. Since transformation results in a loss of the differentiated state, one mechanism by which gap junctions may control tumour progression is to promote or enhance differentiation. Processes of differentiation and growth control are mediated at the genetic level. Thus, an alternative or complimentary mechanism of tumour suppression could involve the regulation of gene expression by connexins and gap junctional coupling. Finally, gap junction channels form a conduit between cells for the exchange of ions, second messengers, and small metabolites. It is clear that the sharing of these molecules can be rather selective and may be involved in growth control processes. In this review, examples will be discussed that provide evidence for each of these mechanisms. Taken together, these findings point to a variety of mechanims by which connexins and the gap junction channels that they form may control tumour progression.Key words: gap junctions, connexin, cancer.

2014 ◽  
Vol 306 (12) ◽  
pp. H1708-H1713 ◽  
Author(s):  
Jun Liu ◽  
Vinayakumar Siragam ◽  
Jun Chen ◽  
Michael D. Fridman ◽  
Robert M. Hamilton ◽  
...  

Gap junctional intercellular communication (GJIC) is a critical part of cellular activities and is necessary for electrical propagation among contacting cells. Disorders of gap junctions are a major cause for cardiac arrhythmias. Dye transfer through microinjection is a conventional technique for measuring GJIC. To overcome the limitations of manual microinjection and perform high-throughput GJIC measurement, here we present a new robotic microinjection system that is capable of injecting a large number of cells at a high speed. The highly automated system enables large-scale cell injection (thousands of cells vs. a few cells) without major operator training. GJIC of three cell lines of differing gap junction density, i.e., HeLa, HEK293, and HL-1, was evaluated. The effect of a GJIC inhibitor (18-α-glycyrrhetinic acid) was also quantified in the three cell lines. System operation speed, success rate, and cell viability rate were quantitatively evaluated based on robotic microinjection of over 4,000 cells. Injection speed was 22.7 cells per min, with 95% success for cell injection and >90% survival. Dye transfer cell counts and dye transfer distance correlated with the expected connexin expression of each cell type, and inhibition of dye transfer correlated with the concentration of GJIC inhibitor. Additionally, real-time monitoring of dye transfer enables the calculation of coefficients of molecular diffusion through gap junctions. This robotic microinjection dye transfer technique permits rapid assessment of gap junction function in confluent cell cultures.


2006 ◽  
Vol 23 (1) ◽  
pp. 1-10 ◽  
Author(s):  
KATHLEEN R. ZAHS ◽  
PAUL W. CEELEN

Gap junctions provide a pathway for the direct intercellular exchange of ions and small signaling molecules. Gap junctional coupling between retinal astrocytes and between astrocytes and Müller cells, the principal glia of vertebrate retinas, has been previously demonstrated by the intercellular transfer of gap-junction permeant tracers. However, functional gap junctions have yet to be demonstrated between mammalian Müller cells. In the present study, when the gap-junction permeant tracers Neurobiotin and Lucifer yellow were injected into a Müller cellviaa patch pipette, the tracers transferred to at least one additional cell in more than half of the cases examined. Simultaneous whole-cell recordings from pairs of Müller cells in the isolated rabbit retina revealed electrical coupling between closely neighboring cells, confirming the presence of functional gap junctions between rabbit Müller cells. The limited degree of this coupling suggests that Müller cell–Müller cell gap junctions may coordinate the functions of small ensembles of these glial cells. Immunohistochemistry and immunoblotting were used to identify the connexins in rabbit retinal glia. Connexin30 (Cx30) and connexin43 (Cx43) immunoreactivities were associated with astrocytes in the medullary ray region of the retinas of both pigmented and albino rabbits. Connexin43 was also found in Müller cells, but antibody recognition differed between astrocytic and Müller cell connexin43.


1997 ◽  
Vol 110 (15) ◽  
pp. 1751-1758 ◽  
Author(s):  
P.A. De Sousa ◽  
S.C. Juneja ◽  
S. Caveney ◽  
F.D. Houghton ◽  
T.C. Davies ◽  
...  

The connexin multigene family (13 characterized members in rodents) encodes the subunits of gap junction channels. Gap junctional intercellular coupling, established during compaction of the preimplantation mouse embryo, is assumed to be necessary for development of the blastocyst. One member of the connexin family, connexin43, has been shown to contribute to the gap junctions that form during compaction, yet embryos homozygous for a connexin43 null mutation develop normally, at least until implantation. We show that this can be explained by contributions from one or more additional connexin genes that are normally expressed along with connexin43 in preimplantation development. Immunogold electron microscopy confirmed that roughly 30% of gap junctions in compacted morulae contain little or no connexin43 and therefore are likely to be composed of another connexin(s). Confocal immunofluorescence microscopy was then used to demonstrate that connexin45 is also assembled into membrane plaques, beginning at the time of compaction. Correspondingly, embryos homozygous for the connexin43 null mutation were found to retain the capacity for cell-to-cell transfer of fluorescent dye (dye coupling), but at a severely reduced level and with altered permeability characteristics. Whereas mutant morulae showed no evidence of dye coupling when tested with 6-carboxyfluorescein, dye coupling could be demonstrated using 2′,7′-dichlorofluorescein, revealing permeability characteristics previously established for connexin45 channels. We conclude that preimplantation development in the mouse can proceed normally even though both the extent and nature of gap junctional coupling have been perturbed. Despite the distinctive properties of connexin43 channels, their role in preimplantation development can be fulfilled by one or more other types of gap junction channels.


2001 ◽  
Vol 20 (11) ◽  
pp. 577-583 ◽  
Author(s):  
S-H Jeong ◽  
M-H Cho ◽  
J-H Cho

Cadmium has been associated with a number of tumors but its role in tumor promotion has not been elucidated clearly or the results obtained from various studies have been conflicting. This study was designed to investigate the effects of cadmium on the gap junctional intercellular communication (GJIC), number of gap junctions per cell, and cell proliferation in WB-F344 rat liver epithelial cells from the viewpoint of tumor promotion. GJIC was monitored by counting the cells stained with Lucifer yellow CH dye, using the scrape-loading and dye-transfer method. The numbers of gap junctions per cell were visually quantitated after an indirect immunostaining for gap junction protein using an antibody to connexin 43. Cell proliferation was assayed by direct counting of the living cells using the trypan blue dye exclusion method. In the time course study, cells treated with 200 μM CdCl2 showed rapid and nearly complete inhibition of GJIC (approximately 14% of the control) and a decrease in the number of gap junctions per cell (approximately 21% of the control) at 30 min, and the decrease continued up to 4 h without any changes in the cell viability. Treatment with CdCl2 7.4-200 μM) for 4 h resulted in the decrease of GJIC and gap junction numbers per cell in a dose-response pattern without changes in the cell viability. In the long-term (14 days) exposure studies at doses of 0.01-7.4 μM CdCl2, an increase in cell proliferation was observed at low doses of 0.03-2.5 μM CdCl2, with GJIC also decreasing. These data demonstrate that cadmium inhibits GJIC, reduces the number of gap junctions per cell, and induces cell proliferation while decreasing the function of the gap junction.


2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.


2014 ◽  
Vol 307 (1) ◽  
pp. G24-G32 ◽  
Author(s):  
Anamika M. Reed ◽  
Thomas Kolodecik ◽  
Sohail Z. Husain ◽  
Fred S. Gorelick

Decreased extracellular pH is observed in a number of clinical conditions and can sensitize to the development and worsen the severity of acute pancreatitis. Because intercellular communication through gap junctions is pH-sensitive and modulates pancreatitis responses, we evaluated the effects of low pH on gap junctions in the rat pancreatic acinar cell. Decreasing extracellular pH from 7.4 to 7.0 significantly inhibited gap junctional intracellular communication. Acidic pH also significantly reduced levels of connexin32, the predominant gap junction protein in acinar cells, and altered its localization. Increased degradation through the proteasomal, lysosomal, and autophagic pathways mediated the decrease in connexin32 under low-pH conditions. These findings provide the first evidence that low extracellular pH can regulate gap junctional intercellular communication by enhancing connexin degradation.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4703-4714 ◽  
Author(s):  
M. Levin ◽  
M. Mercola

Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be viewed as distinct and autonomous fields. Here we describe a series of experiments that indicate that the initiation of these programs requires communication between the two sides of the blastoderm. When deprived of either the left or the right lateral halves of the blastoderm, embryos are incapable of patterning normal left-right gene expression at Hensen's node. Not only are both flanks required, suggesting that there is no single signaling source for LR pattern, but the blastoderm must be intact. These results are consistent with our previously proposed model in which the orientation of LR asymmetry in the frog, Xenopus laevis, depends on large-scale partitioning of LR determinants through intercellular gap junction channels (M. Levin and M. Mercola (1998) Developmental Biology 203, 90–105). Here we evaluate whether gap junctional communication is required for the LR asymmetry in the chick, where it is possible to order early events relative to the well-characterized left and right hierarchies of gene expression. Treatment of cultured chick embryos with lindane, which diminishes gap junctional communication, frequently unbiased normal LR asymmetry of Shh and Nodal gene expression, causing the normally left-sided program to be recapitulated symmetrically on the right side of the embryo. A survey of early expression of connexin mRNAs revealed that Cx43 is present throughout the blastoderm at Hamburger-Hamilton stage 2–3, prior to known asymmetric gene expression. Application of antisense oligodeoxynucleotides or blocking antibody to cultured embryos also resulted in bilateral expression of Shh and Nodal transcripts. Importantly, the node and primitive streak at these stages lack Cx43 mRNA. This result, together with the requirement for an intact blastoderm, suggests that the path of communication through gap junction channels circumvents the node and streak. We propose that left-right information is transferred unidirectionally throughout the epiblast by gap junction channels in order to pattern left-sided Shh expression at Hensen's node.


1990 ◽  
Vol 10 (4) ◽  
pp. 1754-1763
Author(s):  
D S Crow ◽  
E C Beyer ◽  
D L Paul ◽  
S S Kobe ◽  
A F Lau

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


2001 ◽  
Vol 281 (3) ◽  
pp. C972-C981 ◽  
Author(s):  
Grant C. Churchill ◽  
Monica M. Lurtz ◽  
Charles F. Louis

The quantitative effects of Ca2+signaling on gap junctional coupling in lens epithelial cells have been determined using either the spread of Mn2+ that is imaged by its ability to quench the fluorescence of fura 2 or the spread of the fluorescent dye Alexa Fluor 594. Gap junctional coupling was unaffected by a mechanically stimulated cell-to-cell Ca2+wave. Furthermore, when cytosolic Ca2+ concentration (Ca[Formula: see text]) increased after the addition of the agonist ATP, coupling was unaffected during the period that Ca[Formula: see text] was maximal. However, coupling decreased transiently ∼5–10 min after agonist addition when Ca[Formula: see text] returned to resting levels, indicating that this transient decrease in coupling was unlikely due to a direct action of Ca[Formula: see text] on gap junctions. An increase in Ca[Formula: see text] mediated by the ionophore ionomycin that was sustained for several minutes resulted in a more rapid and sustained decrease in coupling (IC50 ∼300 nM Ca2+, Hill coefficient of 4), indicating that an increase in Ca[Formula: see text]alone could regulate gap junctions. Thus Ca[Formula: see text]increases that occurred during agonist stimulation and cell-to-cell Ca2+ waves were too transient to mediate a sustained uncoupling of lens epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document