Cerebral blood flow regulation by nitric oxide in neurological disorders

2009 ◽  
Vol 87 (8) ◽  
pp. 581-594 ◽  
Author(s):  
Noboru Toda ◽  
Kazuhide Ayajiki ◽  
Tomio Okamura

There has been a rapid increase in the amount of information on the physiological and pathophysiological roles of nitric oxide (NO) in the brain. This molecule, which is formed by the constitutive isoforms of NO synthase, endothelial (eNOS) and neuronal (nNOS), plays an obligatory role in the regulation of cerebral blood flow and cell viability and in the protection of nerve cells or fibres against pathogenic factors associated with Alzheimer’s disease, Huntington’s disease, seizures, and migraine. Cerebral blood flow is impaired by decreased formation of NO from endothelial cells, autonomic nitrergic nerves, or brain neurons and also by increased production of reactive oxygen species (ROS). The NO–ROS interaction is an important topic in discussing blood flow and cell viability in the brain. Excessive production of NO by inducible NOS (iNOS) and nNOS in the brain participates in neurotoxicity. Recent studies on brain circulation have provided useful information about the involvement of impaired NO availability or uncontrolled NO production in cerebral pathogenesis, including Alzheimer’s disease, seizures, vascular headaches, and inflammatory disorders. Insight into the role of NO in the brain will contribute to our better understanding of cerebral hemodynamic dysfunction and will aid in developing novel therapeutic measures in diseases of the central nervous system.

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S91-S91
Author(s):  
Candice E Van Skike ◽  
Stacy A Hussong ◽  
Andy Banh ◽  
Veronica Galvan

Abstract We recently identified pathogenic soluble aggregated tau (tau oligomers) in the cerebral microvasculature of human patients with tauopathies, including Alzheimer’s disease (AD). The functional consequences of cerebrovascular tau accumulation are not yet understood. The aim of the present study was to determine whether pathogenic tau accumulation leads to cerebrovascular dysfunction. To this end, we measured neurovascular coupling (NVC), a highly regulated process that synchronizes cerebral blood flow to neuronal activation, using the PS19(P301S) mouse model of tauopathy. The change in cerebral blood flow evoked by whisker stimulation was measured using Laser Doppler flowmetry in PS19 and wildtype control mice and the functional contribution of neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively) was calculated. Vascular reactivity was assessed using topical acetylcholine to evoke endothelium-dependent vasodilation. To assess the direct impact of pathogenic tau on cell-specific NOS function, we treated N2a neuroblastoma cells or mouse brain vascular endothelial cells with soluble tau aggregates and measured activity of nNOS and eNOS. Our data indicate isolated overexpression of mutant tau impairs NVC responses, and this deficit is mediated by a reduction in nNOS activity in vivo. Further, our studies suggest tauopathy also impairs endothelium-dependent vasoreactivity in the cortex. Additionally, soluble tau aggregates inhibit the phosphorylation of NOS in primary cultured cells. Therefore, inhibition of NOS phosphorylation by pathogenic soluble tau aggregates may underlie cerebrovascular dysfunction in tauopathies. Thus, therapeutic modulation of pathogenic tau may mitigate brain microvascular deficits, which occur prior to clinical onset in Alzheimer’s disease and potentially other tauopathies.


2015 ◽  
Vol 12 (10) ◽  
pp. 914-922 ◽  
Author(s):  
Maximilian Wiesmann ◽  
Carmen Capone ◽  
Valerio Zerbi ◽  
Laura Mellendijk ◽  
Arend Heerschap ◽  
...  

2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


2000 ◽  
Vol 88 (4) ◽  
pp. 1381-1389 ◽  
Author(s):  
Ivan T. Demchenko ◽  
Albert E. Boso ◽  
Thomas J. O'Neill ◽  
Peter B. Bennett ◽  
Claude A. Piantadosi

We have tested the hypothesis that cerebral nitric oxide (NO) production is involved in hyperbaric O2 (HBO2) neurotoxicity. Regional cerebral blood flow (rCBF) and electroencephalogram (EEG) were measured in anesthetized rats during O2 exposure to 1, 3, 4, and 5 ATA with or without administration of the NO synthase inhibitor ( N ω-nitro-l-arginine methyl ester), l-arginine, NO donors, or the N-methyl-d-aspartate receptor inhibitor MK-801. After 30 min of O2 exposure at 3 and 4 ATA, rCBF decreased by 26–39% and by 37–43%, respectively, and was sustained for 75 min. At 5 ATA, rCBF decreased over 30 min in the substantia nigra by one-third but, thereafter, gradually returned to preexposure levels, preceding the onset of EEG spiking activity. Rats pretreated with N ω-nitro-l-arginine methyl ester and exposed to HBO2 at 5 ATA maintained a low rCBF. MK-801 did not alter the cerebrovascular responses to HBO2at 5 ATA but prevented the EEG spikes. NO donors increased rCBF in control rats but were ineffective during HBO2 exposures. The data provide evidence that relative lack of NO activity contributes to decreased rCBF under HBO2, but, as exposure time is prolonged, NO production increases and augments rCBF in anticipation of neuronal excitation.


Sign in / Sign up

Export Citation Format

Share Document