scholarly journals Aryl hydrocarbon receptor-dependence of dioxin’s effects on constitutive mouse hepatic cytochromes P450 and growth hormone signaling components

2012 ◽  
Vol 90 (10) ◽  
pp. 1354-1363 ◽  
Author(s):  
Chunja Lee ◽  
David S. Riddick

The aryl hydrocarbon receptor (AHR) has physiological roles in the absence of exposure to exogenous ligands, and mediates adaptive and toxic responses to the environmental pollutant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD). A readily metabolized AHR agonist, 3-methylcholanthrene, disrupts the expression of mouse hepatic growth hormone (GH) signaling components and suppresses cytochrome P450 2D9 (Cyp2d9), a male-specific gene controlled by pulsatile GH via signal transducer and activator of transcription 5b (STAT5b). Using TCDD as an essentially nonmetabolized AHR agonist, and Ahr −/− mice as the preferred model to determine the AHR-dependence of biological responses, we now show that 2 mouse hepatic STAT5b target genes, Cyp2d9, and major urinary protein 2 (Mup2), are suppressed by TCDD in an AHR-dependent manner. TCDD also decreased hepatic mRNA levels for GH receptor, Janus kinase 2, and STAT5a/b with AHR-dependence. Without inducing selected hepatic inflammatory markers, TCDD caused AHR-dependent induction of Cyp1a1 and NADPH-cytochrome P450 oxidoreductase (Por) and suppression of Cyp3a11. In vehicle-treated mice, basal mRNA levels for CYP2D9, CYP3A11, POR, serum amyloid protein P, and MUP2 were influenced by Ahr genetic status. We conclude that AHR activation per se leads to dysregulation of hepatic GH signaling components and suppression of some, but not all, STAT5b target genes.

2020 ◽  
Vol 21 (24) ◽  
pp. 9412
Author(s):  
Yen Hai Vu ◽  
Akiko Hashimoto-Hachiya ◽  
Masaki Takemura ◽  
Ayako Yumine ◽  
Yasutaka Mitamura ◽  
...  

Skin barrier dysfunction, including reduced filaggrin (FLG) and loricrin (LOR) expression, plays a critical role in atopic dermatitis (AD) development. Since aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, mediates keratinocyte differentiation, it is a potential target for AD treatment. Recently, clinical studies have shown that tapinarof, an AHR modulator, attenuated the development of AD. To examine the molecular mechanism involved in this, we analyzed tapinarof-treated normal human epidermal keratinocytes (NHEKs). Tapinarof upregulated FLG and LOR mRNA and protein expression in an AHR-dependent manner. Tapinarof also induced the secretion of IL-24, a cytokine that activates Janus kinase (JAK)-signal transducer and activator of transcription (STAT), leading to the downregulation of FLG and LOR expression. Knockdown of either IL-24 or STAT3 expression by small interfering RNA (siRNA) transfection augmented the upregulation of FLG and LOR expression induced by tapinarof, suggesting that inhibition of the IL-24/STAT3 axis during AHR activation supports the improvement of skin barrier dysfunction. Furthermore, tapinarof alone could restore the downregulation of FLG and LOR expression induced by IL-4, a key cytokine of AD, and its combination with JAK inhibitors enhanced this effect. These findings provide a new strategy for treating AD using AHR modulators and JAK inhibitors.


2004 ◽  
Vol 24 (12) ◽  
pp. 5209-5222 ◽  
Author(s):  
Cédric Gouédard ◽  
Robert Barouki ◽  
Yannick Morel

ABSTRACT Human paraoxonase 1 (PON-1) is a serum high-density lipoprotein-associated enzyme mainly secreted by the liver. It has endogenous and exogenous substrates and displays protective properties with respect to cardiovascular disease and organophosphate intoxication. In the HuH7 human hepatoma cell line, PON-1 activity and mRNA levels were increased by dietary polyphenolic compounds such as quercetin but also by toxic ligands of the aryl hydrocarbon receptor (AhR) such as 3-methylcholanthrene (3-MC). However, the 2,3,7,8-tetrachlorobenzo(p)dioxin (TCDD) was a poor inducer. Transient and stable transfection assays indicated that these compounds increased the PON-1 gene promoter activity in an AhR-dependent manner, since their effect was inhibited by 7-keto-cholesterol and AhR-directed short interfering RNA. Deletions and mutations studies showed that a xenobiotic responsive element (XRE)-like sequence within the PON-1 promoter mediated the effect of 3-MC and quercetin. In contrast with consensus XREs from the cytochrome P450 1A1 gene, the PON-1 XRE-like element mediated preferentially the effect of quercetin compared to the results seen with TCDD. Furthermore, AhR binding to this element was preferentially activated by quercetin. These observations provide a molecular mechanism for the regulation of the cardioprotective enzyme PON-1 by polyphenols. They suggest also that AhR ligands may differentially regulate gene expression depending on the DNA target sequence.


2021 ◽  
Vol 22 (13) ◽  
pp. 6669
Author(s):  
Byongsun Lee ◽  
Seungjae Lee ◽  
Younggwang Lee ◽  
Yongjin Park ◽  
Jaekyung Shim

Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD). There has been accumulating evidence that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has still less revealing. Here, we have shown that emerin downregulates signal transducers and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus-kinase (JAK). Deletion mutation experiments showed that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacted directly and co-localized with STAT3 in the nuclear membrane. Emerin knockdown induced STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin by assembling with BAF and lamin A/C acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induced STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and could be a new therapeutic target for treatment.


1998 ◽  
Vol 56 (5) ◽  
pp. 599-612 ◽  
Author(s):  
Wei Li ◽  
Patricia A Harper ◽  
Bing-Kou Tang ◽  
Allan B Okey

Sign in / Sign up

Export Citation Format

Share Document