alternaria mycotoxins
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 118 ◽  
pp. 122-129
Author(s):  
Xiaoting Qiao ◽  
Gang Li ◽  
Jing Zhang ◽  
Jing Du ◽  
Yunjia Yang ◽  
...  

LWT ◽  
2022 ◽  
Vol 155 ◽  
pp. 112926
Author(s):  
Elizabet Janić Hajnal ◽  
Janja Babič ◽  
Lato Pezo ◽  
Vojislav Banjac ◽  
Radmilo Čolović ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 883
Author(s):  
Luis G. Addante-Moya ◽  
Antonio Abad-Somovilla ◽  
Antonio Abad-Fuentes ◽  
Consuelo Agulló ◽  
Josep V. Mercader

Immunochemical methods for mycotoxin analysis require antigens with well-defined structures and antibodies with outstanding binding properties. Immunoreagents for the mycotoxins alternariol and/or alternariol monomethyl ether have typically been obtained with chemically uncharacterized haptens, and antigen conjugates have most likely been prepared with mixtures of functionalized molecules. For the first time, total synthesis was performed, in the present study, to obtain two haptens with opposite linker attachment locations. The functionalized synthetic haptens were purified and deeply characterized by different spectrometric methods, allowing the preparation of bioconjugates with unequivocal structures. Direct and indirect competitive enzyme-linked immunosorbent assays, using homologous and heterologous conjugates, were employed to extensively evaluate the generated immunoreagents. Antibodies with high affinity were raised from conjugates of both haptens, and a structure-activity relationship between the synthetic haptens and the specificity of the generated antibodies could be established. These results pave the way for the development of novel highly sensitive immunoassays selective of one or two of these Alternaria mycotoxins.


2021 ◽  
Vol 104 (3) ◽  
pp. 153-162
Author(s):  
Alexandra Stanislavovna Orina* ◽  
Olga Pavlovna Gavrilova ◽  
Tatyana Yuryevna Gagkaeva ◽  
Nadezhda Nikolayevna Gogina

The ubiquitous occurrence of Alternaria fungi belonging to sections Alternaria and Infectoriae was confirmed using real-time PCR in wheat, barley and oat grain grown in West Siberia in 2018‒2019. The DNA amount of Alternaria section Alternaria fungi varied from 53×10-4 to 21731×10-4 pg/ng and on average exceeded the DNA amount of Alternaria section Infectoriae fungi by 4.5‒14.6 times, depending on the crop and harvest year.The average DNA amount of Alternaria fungi belonging to both sections in the oat grain was lower than in wheat and barley grain. The grain samples from Altay region were the most infected with Alternaria fungi. The alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), and tenuazonic acid (TeA) mycotoxins produced by Alternaria fungi were detected by HPLC-MS/MS in 23 %, 6 %, 85 %, and 83 % of analyzed grain samples, respectively. The majority (61 %) of the samples contained two Alternaria mycotoxins in the grain (mainly TEN and TeA), 19 % of the samples three mycotoxins, and only one sample all four together. In the most of samples the content of Alternaria mycotoxins did not exceed 100 μg/kg, and only TeA content was higher (from 113 to 14963 μg/kg) than others. The significant differences in grain crops by the Alternaria mycotoxins content were revealed: more amounts of AOH, AME, and less amount of TEN were found in oat grain then in barley grain. A high positive significant correlation between the DNA amount of Alternaria section Alternaria fungi and TeA was established that indicates the role of these fungi as the main producers of TeA in the grain.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 681
Author(s):  
Aleksandra S. Orina ◽  
Olga P. Gavrilova ◽  
Nadezhda N. Gogina ◽  
Philipp B. Gannibal ◽  
Tatiana Yu. Gagkaeva

Alternaria fungi dominate the grain microbiota in many regions of the world; therefore, the detection of species that are able to produce mycotoxins has received much attention. A total of 178 grain samples of wheat, barley and oat obtained from the Urals and West Siberia regions of Russia in 2017–2019 were included in the study. Grain contamination with Alternaria fungi belonging to sections Alternaria and Infectoriae was analysed using qPCR with specific primers. The occurrence of four mycotoxins produced by Alternaria, AOH, AME, TEN, and TeA, was defined by HPLC-MS/MS. Alternaria DNA was found in all analysed grain samples. The prevalence of DNA of Alternaria sect. Alternaria fungi (range 53 × 10−4–21,731 × 10−4 pg/ng) over the DNA of Alternaria sect. Infectoriae (range 11 × 10−4‒4237 × 10−4 pg/ng) in the grain samples was revealed. Sixty-two percent of grain samples were contaminated by at least two Alternaria mycotoxins. The combination of TEN and TeA was found most often. Eight percent of grain samples were contaminated by all four mycotoxins, and only 3% of samples were free from the analysed secondary toxic metabolites. The amounts varied in a range of 2–53 µg/kg for AOH, 3–56 µg/kg for AME, 3–131 µg/kg for TEN and 9–15,000 µg/kg for TeA. To our knowledge, a new global maximum level of natural contamination of wheat grain with TeA was detected. A positive correlation between the amount of DNA from Alternaria sect. Alternaria and TeA was observed. The significant effects of cereal species and geographic origin of samples on the amounts of DNA and mycotoxins of Alternaria spp. in grain were revealed. Barley was the most heavily contaminated with fungi belonging to both sections. The content of AOH in oat grain was, on average, higher than that found in wheat and barley. The content of TEN in the grain of barley was lower than that in wheat and similar to that in oat. The content of TeA did not depend on the cereal crop. The effect of weather conditions (summer temperature and rainfall) on the final fungal and mycotoxin contamination of grain was discussed. The frequent co-occurrence of different Alternaria fungi and their mycotoxins in grain indicates the need for further studies investigating this issue.


Author(s):  
Anqi Chen ◽  
Xin Mao ◽  
Qinghui Sun ◽  
Zixuan Wei ◽  
Juan Li ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 304
Author(s):  
Janja Babič ◽  
Gabrijela Tavčar-Kalcher ◽  
Franci Aco Celar ◽  
Katarina Kos ◽  
Tanja Knific ◽  
...  

In recent years, the less-studied Alternaria mycotoxins have attracted increasing interest due to the lack of survey data and their ability to cause toxic effects in animals and humans. To fill the gap, the aim of this three-year survey was to investigate the presence and co-occurrence of Alternaria and other mycotoxins in a total of 433 cereal grain samples from Slovenian farms and agricultural cooperatives from 2014 to 2016. Using the multi-mycotoxin method, 14 mycotoxins were determined. In 53% of 433 analysed samples, contamination with at least one mycotoxin was found. Deoxynivalenol (DON) and tenuazonic acid (TeA) were present in 32% and 26% of cereal grain samples, respectively, whereas alternariol (AOH), tentoxin (TEN), alternariol monomethyl ether (AME), 3- and 15-acetyldeoxynivalenol (3- and 15-AcDON), and zearalenone (ZEN) were present in fewer than 15% of the samples. Ochratoxin A (OTA) was found in one rye sample, while diacetoxyscirpenol (DAS), HT-2 and T-2 toxin, and fumonisins B1 and B2 (FB1 and FB2) were not detected. The highest maximum and median concentrations of Alternaria toxins were determined in spelt in 2016 (TeA, 2277 µg/kg and 203 µg/kg, respectively), and those of Fusarium toxins in wheat in 2015 (DON, 4082 µg/kg and 387 µg/kg, respectively). The co-occurrence of two or more mycotoxins was found in 43% of the positive samples. The correlations between Alternaria toxins were very weak but statistically significant (r: 0.15–0.17, p: 0.0042–0.0165). A well-known correlation between Fusarium toxins DON and ZEN was weak and highly significant (r = 0.28, p < 0.0001).


Author(s):  
Francesco Crudo ◽  
Georg Aichinger ◽  
Jovana Mihajlovic ◽  
Elisabeth Varga ◽  
Luca Dellafiora ◽  
...  

AbstractThe human gut microbiota plays an important role in the maintenance of human health. Factors able to modify its composition might predispose the host to the development of pathologies. Among the various xenobiotics introduced through the diet, Alternaria mycotoxins are speculated to represent a threat for human health. However, limited data are currently available about the bidirectional relation between gut microbiota and Alternaria mycotoxins. In the present work, we investigated the in vitro effects of different concentrations of a complex extract of Alternaria mycotoxins (CE; containing eleven mycotoxins; e.g. 0.153 µM alternariol and 2.3 µM altersetin, at the maximum CE concentration tested) on human gut bacterial strains, as well as the ability of the latter to metabolize or adsorb these compounds. Results from the minimum inhibitory concentration assay showed the scarce ability of CE to inhibit the growth of the tested strains. However, the growth kinetics of most of the strains were negatively affected by exposure to the various CE concentrations, mainly at the highest dose (50 µg/mL). The CE was also found to antagonize the formation of biofilms, already at concentrations of 0.5 µg/mL. LC–MS/MS data analysis of the mycotoxin concentrations found in bacterial pellets and supernatants after 24 h incubation showed the ability of bacterial strains to adsorb some Alternaria mycotoxins, especially the key toxins alternariol, alternariol monomethyl ether, and altersetin. The tendency of these mycotoxins to accumulate within bacterial pellets, especially in those of Gram-negative strains, was found to be directly related to their lipophilicity.


Author(s):  
Sophie Scheibenzuber ◽  
Fabian Dick ◽  
Stefan Asam ◽  
Michael Rychlik

AbstractA multi-mycotoxin LC-MS/MS method was developed to quantify 13 free and modified Alternaria toxins in different beer types by applying a combination of stable-isotope dilution assays (SIDAs) and matrix-matched calibration. With limits of detection (LODs) between 0.03 µg/L (alternariol monomethyl ether, AME) and 5.48 µg/L (altenuene, ALT), limits of quantitation (LOQs) between 0.09 µg/L (AME) and 16.24 µg/L (ALT), and recoveries between 72 and 113%, we obtained a sensitive and reliable method, which also covers the emerging toxins alternariol-3-glucoside (AOH-3-G), alternariol-9-glucoside (AOH-9-G), alternariol monomethyl ether-3-glucoside (AME-3-G) and alternariol-3-sulfate (AOH-3-S) and alternariol monomethylether-3-sulfate (AME-3-S). Furthermore, 50 different beer samples were analyzed, showing no contamination with Alternaria toxins apart from tenuazonic acid (TeA) in concentrations between 0.69 µg/L and 16.5 µg/L. According to this study, the exposure towards TeA through beer consumption can be considered as relatively low, as the threshold of toxicological concern (TTC) value of 1500 ng/kg body weight per day might not be reached when consuming reasonable amounts of beer.


2021 ◽  
Author(s):  
Wenbo Guo ◽  
Junhua Yang ◽  
Xueke Niu ◽  
Emmanuel K. Tangni ◽  
Zhihui Zhao ◽  
...  

An ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for simultaneous determination of 15 mycotoxins.


Sign in / Sign up

Export Citation Format

Share Document