The Effect of Papillectomy on Renal Function in the Rat during Hydropenia and after an Acute Saline Load

1972 ◽  
Vol 50 (7) ◽  
pp. 662-673 ◽  
Author(s):  
D. R. Wilson

The effect of unilateral papillectomy on renal function in the rat was compared with the effect of partial nephrectomy which produced a similar decrease in glomerular filtration rate (G.F.R.) in the presence of an intact papilla. Under hydropenic conditions the kidney with papillectomy had a higher urine flow rate, sodium excretion rate, fractional sodium excretion, and osmolar clearance, while urine osmolality was lower. After an acute saline load the differences in sodium and water excretion disappeared, and fractional excretion of sodium and water were significantly higher in both types of kidney damage than in the contralateral control kidney. Free water reabsorption was lower in the papillectomized kidney after saline loading. Thus removal of the papilla resulted in abnormalities in the renal handling of salt and water which varied with the state of hydration of the animal and which were distinct from the effects of a reduction in G.F.R. by partial nephrectomy. It was concluded that the site of nephron loss, whether mainly in the renal medulla or in the cortex, may be another factor, in addition to G.F.R. and tubular reabsorption, which influences sodium and water excretion by the moderately damaged kidney.

1991 ◽  
Vol 260 (1) ◽  
pp. R82-R89
Author(s):  
M. G. Ervin ◽  
R. Castro ◽  
D. J. Sherman ◽  
M. G. Ross ◽  
J. F. Padbury ◽  
...  

Circulating epinephrine alters atrial natriuretic factor (ANF) and arginine vasopressin (AVP) secretion, and all three hormones influence renal function. To quantify the relationships among fetal plasma epinephrine levels, fetal ANF and AVP secretion, and fetal renal function, six chronically catheterized fetal lambs (132 +/- 1 days gestation) received successive 40-min epinephrine infusions (0.1, 0.4, and 1.8 micrograms.min-1.kg-1). The second epinephrine infusion dose evoked significant increases in urine flow (V; 0.7 +/- 0.2 to 1.2 +/- 0.2 ml/min), free water clearance (CH2O; 0.3 +/- 0.1 to 0.7 +/- 0.1 ml/min), glomerular filtration rate (GFR; 3.9 +/- 0.7 to 5.4 +/- 0.8 ml/min), fractional water excretion (V/CH2O; 19 +/- 3 to 25 +/- 2%), mean arterial pressure (MAP; 45 +/- 3 to 51 +/- 4 mmHg), and a 94% increase in plasma ANF levels. A fourfold increase in the infusion dose significantly increased osmolar clearance (0.3 +/- 0.1 to 0.6 +/- 0.1 ml/min), sodium excretion (28 +/- 8 to 53 +/- 13 mueq/min), and plasma AVP levels (2.4 +/- 0.5 to 6.4 +/- 2.4 pg/ml) with no additional effect on V, CH2O, GFR, V/GFR, MAP, or plasma ANF levels. Urine osmolality and fractional sodium excretion did not change in response to epinephrine infusion. Our results demonstrate that epinephrine infusion stimulates fetal ANF secretion and to a lesser extent AVP secretion and significantly influences fetal renal function.


2008 ◽  
Vol 295 (4) ◽  
pp. F1239-F1247 ◽  
Author(s):  
Alaa E. S. Abdel-Razik ◽  
Richard J. Balment ◽  
Nick Ashton

Urotensin II (UII) has been implicated widely in cardiovascular disease. The mechanism(s) through which it contributes to elevated blood pressure is unknown, but its emerging role as a regulator of mammalian renal function suggests that the kidney might be involved. The aim of this study was to determine the effect of UII on renal function in the spontaneously hypertensive rat (SHR). UII infusion (6 pmol·min−1·100 g body wt−1) in anesthetized SHR and control Wistar-Kyoto (WKY) rats produced marked reductions in glomerular filtration rate (ΔGFR WKY, n = 7, −0.3 ± 0.1 vs. SHR, n = 7, −0.6 ± 0.1 ml·min−1·100 g body wt−1, P = 0.03), urine flow, and sodium excretion rates, which were greater in SHR by comparison with WKY rats. WKY rats also showed an increase in fractional excretion of sodium (ΔFENa; +0.6 ± 0.1%, P = 0.02) in contrast to SHR in which no such change was observed (ΔFENa −0.6 ± 0.2%). Blockade of the UII receptor (UT), and thus endogenous UII activity, with urantide evoked an increase in GFR which was greater in SHR (+0.3 ± 0.1) compared with WKY rats (+0.1 ± 0.1 ml·min−1·100 g body wt−1, P = 0.04) and was accompanied by a diuresis and natriuresis. UII and UT mRNA expression were greater in the renal medulla than the cortex of both strains; however, expression levels were up to threefold higher in SHR tissue. SHR are more sensitive than WKY to UII, which acts primarily to lower GFR thus favoring salt retention in this model of hypertension.


1990 ◽  
Vol 32 (4) ◽  
pp. 304-309 ◽  
Author(s):  
Joel Paulo R. Veiga ◽  
Rashida Khanam ◽  
Tânia T. Rosa ◽  
Luiz F. Junqueira Jr. ◽  
Plínio C. Brant ◽  
...  

Aspects of the renal function were assessed in rats treated with the pentavalent antimonials Glucantime (Meglumine Antimoniate, Rhodia) or Pentostam (Sodium Stibogluconate, Wellcome). In dose of 30 mg of Sb v (Glucantime or Pentostam) by 100 mg of weight by day for 30 days, renal functional changes were observed consisting of disturbances in urine concentrating capacity. Such disturbances were expressed by significantly low values of urine osmolality as compared to the basal values previous to the drugs. The decrease in urine osmolality was associated to a significant increase in urinary flow and in negative free-water clearance. There was no alteration in osmolar clearance and in fractional excretion of sodium. These observations suggest an interference of the drugs in the action of the antidiuretic hormone. The disturbance in urine concentration was reversible after a seven days period without the drugs administration. No significant histopathological alterations were observed in the kidneys of the rats treated with the drugs. On the other hand, the rats treated with a high dose of Pentostam (200 mg/100 grams of weight/day) showed the functional and the histopathological alterations of the acute tubular necrosis.


1986 ◽  
Vol 251 (2) ◽  
pp. F290-F296 ◽  
Author(s):  
K. P. Conrad ◽  
M. Gellai ◽  
W. G. North ◽  
H. Valtin

We examined the renal effects of synthetic oxytocin (OT) in the presence and absence of vasopressin in conscious euvolemic rats. Both sexes of the Long-Evans (LE) and Brattleboro homozygous (DI) strains were used. OT infused intravenously at 0.25 and 2.5 ng X min-1 X 100 g body wt (BW)-1 resulted, respectively, in plasma concentrations of 30 +/- 6 and 265 +/- 88 pg/ml in LE rats and 46 +/- 5 and 327 +/- 29 pg/ml in DI rats. Glomerular filtration rate (GFR) was augmented most consistently by the larger dose of hormone in LE rats (P less than 0.05), whereas the low infusion rate of OT enhanced GFR in DI rats (P less than 0.01). Effective renal plasma flow was not changed significantly. OT (both doses) increased the fractional excretion of sodium two- to threefold in each strain of animal (all at least P less than 0.05 from control), whereas the fractional excretion of potassium was largely unaffected. In LE rats, a diuresis was observed with either infusion rate of hormone, accompanied by a rise in osmolar clearance (COsm). In contrast, there was no change of urine flow with the low dose of OT in DI rats, because COsm increased and the clearance of free water (CH2O) decreased proportionately. The higher infusion rate of OT promoted antidiuresis in DI rats, with negative CH2O and little change in COsm. We conclude that oxytocin enhances GFR and is natriuretic regardless of the presence or absence of endogenous vasopressin.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (5) ◽  
pp. F868-F873
Author(s):  
C. A. Gaillard ◽  
H. A. Koomans ◽  
A. J. Rabelink ◽  
E. J. Mees

We studied the effect of alpha-human natriuretic peptide (ANP, 100 micrograms iv) on renal sodium handling in eight healthy subjects before and after 7 days of indomethacin (50 mg 3 times a day). Sodium intake was 100 mmol/day. Prior to indomethacin, ANP caused a fourfold rise in sodium excretion over the first 20 min and a threefold rise in fractional sodium excretion. The clearance studies, performed during maximal water diuresis, showed increased fractional free water clearance and lithium clearance. Indomethacin caused marked sodium retention. Complete escape did not occur until the sixth day, when cumulative balance was 244 mmol (range 176-337). By this time renin and aldosterone were suppressed and fractional lithium and free water clearance reduced. The natriuretic effect of ANP was not attenuated, and the fractional excretion of sodium and chloride rose even more than without indomethacin. The reduction in lithium and free water clearance under indomethacin tended to be reversed by ANP. These data suggest that the natriuretic effect of ANP is not mediated by or dependent on renal prostaglandins. Indomethacin and ANP appear to have opposite effects on sodium excretion, maximal free water clearance, and lithium clearance.


1984 ◽  
Vol 247 (2) ◽  
pp. F246-F251 ◽  
Author(s):  
W. S. Spielman

The action of theophylline on the adenosine-induced decrease in renin release was studied in anesthetized dogs. Adenosine inhibited renin release, decreased GFR and fractional sodium excretion, and decreased the concentration of angiotensin II in the renal lymph. Theophylline (5 mumol/min intrarenally) had no significant effect on GFR or RBF yet produced a significant increase in the release of renin and the fractional excretion of sodium. The intrarenal infusion of adenosine (3 X 10(-7) mol/min) during theophylline infusion produced no effect on GFR or RBF, but fractional sodium excretion and renin release were significantly decreased. Adenosine was infused at a lower dose (3 X 10(-8) mol/min) during theophylline (5 X 10(-6) mol/min) infusion in a second group of dogs. With the exception of fractional sodium excretion, all effects of adenosine were effectively antagonized by theophylline. Theophylline at 5 X 10(-6) mol/min, which stimulates renin release and effectively antagonizes the renal effects of adenosine, had no detectable effect on cAMP measured in renal cortex. Furthermore, no change in cortical cAMP was observed until theophylline was increased 50-fold over the dose effective in antagonizing adenosine. These findings demonstrate that theophylline, at concentrations having no effect on cortical cAMP, antagonizes the effect of adenosine on renin release. The results are also consistent with the view that theophylline stimulates renin release by a mechanism other than its action on cAMP.


2005 ◽  
Vol 289 (4) ◽  
pp. F672-F678 ◽  
Author(s):  
Yung-Chang Chen ◽  
Melissa A. Cadnapaphornchai ◽  
Jianhui Yang ◽  
Sandra N. Summer ◽  
Sandor Falk ◽  
...  

The purpose of this study was to examine protein expression of renal aquaporins (AQP) and ion transporters in hypothyroid (HT) rats in response to an oral water load compared with controls (CTL) and HT rats replaced with l-thyroxine (HT+T). Hypothyroidism was induced by aminotriazole administration for 10 wk. Body weight, water intake, urine output, solute and urea excretion, and serum and urine osmolality were comparable among the three groups at the conclusion of the 10-wk treatment period. One hour after oral gavage of water (50 ml/kg body wt), HT rats demonstrated significantly less water excretion, higher minimal urinary osmolality, and decreased serum osmolality compared with CTL and HT+T rats. Despite the hyposmolality, plasma vasopressin concentration was elevated in HT rats. These findings in HT rats were associated with an increase in protein abundance of renal cortex AQP1 and inner medulla AQP2. AQP3, AQP4, and the Na-K-2Cl cotransporter were also increased. Moreover, 1 h following the oral water load, HT rats demonstrated a significant increase in the membrane-to-vesicle fraction of AQP2 by Western blot analysis. The defect in urinary dilution in HT rats was reversed by the V2 vasopressin antagonist OPC-31260. In conclusion, impaired urinary dilution in HT rats is primarily compatible with the nonosmotic release of vasopressin and increased protein expression of renal AQP2. The impairment of maximal solute-free water excretion in HT rats, however, appears also to involve diminished distal fluid delivery.


2008 ◽  
Vol 198 (3) ◽  
pp. 617-624 ◽  
Author(s):  
Alaa E S Abdel-Razik ◽  
Ellen J Forty ◽  
Richard J Balment ◽  
Nick Ashton

Urotensin II (UTS) is a potent vasoactive peptide that was originally identified in teleost fish. Mammalian orthologues of UTS and its receptor (UTSR) have been described in several species, including humans and rats. We have shown previously that bolus injections of UTS caused a decrease in urine flow and sodium excretion rates in parallel with marked reductions in renal blood flow (RBF) and glomerular filtration rate (GFR). The aim of this study was to determine the effect of UTS infusion at a dose that has minimal impact upon renal haemodynamics in order to identify a potential direct tubular action of UTS. Infusion of rat UTS (rUTS) at 0.6 pmol/min per 100 g body weight in male Sprague–Dawley rats, which had no effect on RBF and caused a 30% reduction in GFR, resulted in a significant increase in the fractional excretion of sodium (vehicle 2.3±0.6 versus rUTS 0.6 pmol 4.5±0.6%, P<0.05) and potassium. At the higher dose of 6 pmol/min per 100 g body weight, haemodynamic effects dominated the response. rUTS induced a marked reduction in RBF and GFR (vehicle 1.03±0.06 versus rUTS 6 pmol 0.31±0.05 ml/min per 100 g body weight, P<0.05) resulting in an anti-diuresis and anti-natriuresis, but no change in fractional excretion of sodium or potassium. Uts2d and Uts2r mRNA expression were greater in the renal medulla compared with the cortex. Together, these data support an inhibitory action of Uts2d on renal tubule sodium and potassium reabsorption in the rat, in addition to its previously described renal haemodynamic effects.


1993 ◽  
Vol 264 (1) ◽  
pp. F79-F87 ◽  
Author(s):  
D. S. Majid ◽  
A. Williams ◽  
L. G. Navar

Inhibition of nitric oxide (NO) synthesis by intrarenal administration of nitro-L-arginine (NLA) leads to decreases in urinary sodium excretion (UNaV) in association with the increases in renal vascular resistance (RVR). In the present study, we examined the ability of the kidney to alter its sodium excretion in response to acute changes in renal arterial pressure (RAP) in anesthetized dogs before and during intrarenal infusion of NLA (50 micrograms.kg-1.min-1). NO synthesis inhibition in 11 dogs increased RVR by 32 +/- 4% and decreased renal blood flow (RBF) by 25 +/- 3%, outer cortical blood flow by 25 +/- 6%, urine flow by 37 +/- 14%, UNaV by 71 +/- 5%, and fractional excretion of sodium (FENa) by 71 +/- 4%. Glomerular filtration rate was not significantly changed during NLA infusion. As previously reported, there was suppression of the RBF autoregulation plateau during NO synthesis inhibition. In addition, there was a marked attenuation of urine flow and UNaV responses to reductions in RAP (150 to 75 mmHg), with significant reductions in the slopes of the relationships between RAP vs. UNaV and RAP vs. FENa during NLA infusion. Similar responses were observed in nine other dogs treated with the angiotensin receptor antagonist losartan, indicating that an augmented activity of the renin-angiotensin system is not responsible for attenuation of the slope of the pressure-natriuresis relationship during NLA infusion. These data suggest that NO may participate in the mediation of the pressure-natriuresis response.


2016 ◽  
Vol 311 (6) ◽  
pp. F1260-F1266 ◽  
Author(s):  
Xuming Sun ◽  
Ellen Tommasi ◽  
Doris Molina ◽  
Renu Sah ◽  
K. Bridget Brosnihan ◽  
...  

Diets rich in grains and meat and low in fruits and vegetables (acid-producing diets) associate with incident hypertension, whereas vegetarian diets associate with lower blood pressure (BP). However, the pathways that sense and mediate the effects of acid-producing diets on BP are unknown. Here, we examined the impact of the deletion of an acid sensor GPR4 on BP. GPR4 is a proton-sensing G protein-coupled receptor and an acid sensor in brain, kidney, and blood vessels. We found that GPR4 mRNA was higher in subfornical organ (SFO) than other brain regions. GPR4 protein was abundant in SFO and present in capillaries throughout the brain. Since SFO partakes in BP regulation through the renin-angiotensin system (RAS), we measured BP in GPR4−/− and GPR4+/+ mice and found that GPR4 deletion associated with lower systolic BP: 87 ± 1 mmHg in GPR4−/− ( n = 35) vs. 99 ± 2 mmHg ( n = 29) in GPR4+/+; P < 0.0001, irrespective of age and sex. Angiotensin II receptors detected by 125I-Sarthran binding were lower in GPR4−/− than GPR4+/+ mice in SFO and in paraventricular nucleus of hypothalamus. Circulating angiotensin peptides were comparable in GPR4−/− and GPR4+/+ mice, as were water intake and excretion, serum and urine osmolality, and fractional excretion of sodium, potassium, or chloride. A mild metabolic acidosis present in GPR4−/− mice did not associate with elevated BP, implying that deficiency of GPR4 may preclude the effect of chronic acidosis on BP. Collectively, these results posit the acid sensor GPR4 as a novel component of central BP control through interactions with the RAS.


Sign in / Sign up

Export Citation Format

Share Document