Early Effects of Aminonucleoside on Enzymes in the Golgi Apparatus of Rat Liver

1975 ◽  
Vol 53 (4) ◽  
pp. 549-554 ◽  
Author(s):  
E. Katona ◽  
M. A. Moscarello

Rats were injected with a single intravenous dose of aminonucleoside (AMN) and sacrificed 1–48 h later. The activity of several enzymes was assayed in the Golgi apparatus isolated from the liver. Galactosyltransferase activity showed little changes after the AMN, but both acid (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) activities increased within the first hour and reached control levels only 5–24 h later. Thiamine pyrophosphatase and arylsulfatase A (EC 3.1.6.1) activities also increased and stayed at higher levels for the duration of the experiment. Arylsulfatase B (EC 3.1.6.1) activity decreased shortly after the AMN but later increased to above control levels. These findings support earlier results in which liver ultrastructural and biochemical changes were observed early before renal lesions and proteinuria.

1973 ◽  
Vol 51 (8) ◽  
pp. 604-607 ◽  
Author(s):  
E. Katona

Rats were anesthetized by ether inhalation for 4–5 min and sacrificed 1–48 h after anesthesia. From their liver homogenates, the activities of nine enzymes were determined. Activities of urate oxidase and arylsulfatase-A did not change significantly but arylsulfatase-B was slightly decreased. Malate dehydrogenase, arylsulfatase-B, and thiamine pyrophosphatase reached their highest and "malic enzymes" their lowest activities at the same time, 5 h after anesthesia. Alkaline phosphatase first decreased, later increased. Acid phosphatase and glucose-6-phosphatase activities decreased following ether anesthesia. Thesechanges in the enzyme activities generally agree and partly explain previously reported effects of ether anesthesia observed in the serum.


1970 ◽  
Vol 44 (3) ◽  
pp. 492-500 ◽  
Author(s):  
R. D. Cheetham ◽  
D. James Morré ◽  
Wayne N. Yunghans

Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.


1971 ◽  
Vol 49 (3) ◽  
pp. 899-905 ◽  
Author(s):  
R. D. Cheetham ◽  
D. James Morré ◽  
Carol Pannek ◽  
Daniel S. Friend

The thiamine pyrophosphatase (the enzyme [s] catalyzing the release of inorganic phosphate with thiamine pyrophosphate as the substrate) activities of Golgi apparatus-, plasma membrane-, endoplasmic reticulum-, and mitochondria-rich fractions from rat liver were compared at pH 8. Activity was concentrated in the Golgi apparatus fractions, which, on a protein basis, had a specific activity six to eight times that of the total homogenates or purified endoplasmic reticulum fractions. However, only 1–3% of the total activity was recovered in the Golgi apparatus fractions under conditions where 30–50% of the UDPgalactose:N-acetylglucosamine-galactosyl transferase activity was recovered. Considering both recovery of galactosyl transferase and fraction purity, we estimate that approximately 10% of the total thiamine pyrophosphatase activity of the liver was localized within the Golgi apparatus, with a specific activity of about ten times that of the total homogenate. Cytochemically, reaction product was found in the cisternae of the endoplasmic reticulum as well as in the Golgi apparatus. This is in contrast to results obtained in most other tissues, where reaction product was restricted to the Golgi apparatus. Thus, enzymes of rat liver catalyzing the hydrolysis of thiamine pyrophosphate, although concentrated in the Golgi apparatus, are widely distributed among other cell components in this tissue.


Author(s):  
Robert H. Liss ◽  
Frances A. Cotton

Daunomycin, an antibiotic used in the clinical management of acute leukemia, produces a delayed, lethal cardiac toxicity. The lethality is dose and schedule dependent; histopathologic changes induced by the drug have been described in heart, lung, and kidney from hamsters in both single and multiple dose studies. Mice given a single intravenous dose of daunomycin (10 mg/kg) die 6-7 days later. Drug distribution studies indicate that the rodents excrete most of a single dose of the drug as daunomycin and metabolite within 48 hours after dosage (M. A. Asbell, personal communication).Myocardium from the ventricles of 6 moribund BDF1 mice which had received a single intravenous dose of daunomycin (10 mg/kg), and from controls dosed with physiologic saline, was fixed in glutaraldehyde and prepared for electron microscopy.


1996 ◽  
Vol 40 (5) ◽  
pp. 1237-1241 ◽  
Author(s):  
T Whittem ◽  
K Parton ◽  
K Turner

The effects of poly-L-aspartic acid on the pharmacokinetics of gentamicin were examined by using a randomized crossover trial design with the dog. When analyzed according to a three-compartment open model, poly-L-aspartic acid reduced some first-order rate equation constants (A3, lambda 1, and lambda 3), the deep peripheral compartment exit microconstant (k31), the elimination rate constant (k(el)), and the area under the concentration-time curve from 0 to 480 h (AUC0-480) (0.21-, 0.60-, 0.26-, 0.27-, 0.72-, and 0.76-fold, respectively; P < 0.05) but increased the volume of distribution at steady state (Vss), the volume of distribution calculated by the area method (V(area)), the apparent volume of the peripheral compartment (Vp), and all mean time parameters. These results suggested that poly-L-aspartic acid increased the distribution of gentamicin to or binding within the deep peripheral compartment and that poly-L-aspartic acid may have delayed gentamicin transit through the peripheral tissues. In contrast, poly-L-aspartic acid did not alter pharmacokinetic parameters relevant to the central or shallow peripheral compartments to a clinically significant extent. Although gentamicin's pharmacokinetic parameters of relevance to therapeutic drug monitoring were not directly altered, this study has provided pharmacokinetic evidence that poly-L-aspartic acid alters the peripheral distribution of gentamicin. This pharmacokinetic interaction occurred after a single intravenous dose of each drug. Therefore, this interaction should be investigated further, before polyaspartic acid can be considered for use as a clinical nephroprotectant.


Sign in / Sign up

Export Citation Format

Share Document