Renal serine production in vivo: effects of dietary manipulation of serine status

1989 ◽  
Vol 67 (9) ◽  
pp. 1058-1061 ◽  
Author(s):  
John T. Brosnan ◽  
Beatrice Hall

Renal serine production in rats was quantitated by simultaneously measuring renal blood flow and the renal arteriovenous difference for this amino acid. The rate of synthesis was 0.24 ± 0.02 μmol∙min−1∙100 g−1 in rats fed a diet containing 12% casein. This rate was not altered by the inclusion of an additional 1% serine in the diet for 7 days or by acute infusion of serine, although both protocols increased blood serine by 50%. When rats were fed a diet in which protein was entirely replaced by crystalline amino acids the rate of renal serine production was also 0.25 ±0.05 μmol∙min−1∙100 g−1. Omission of serine or both serine and glycine from this diet did not alter the rate of renal serine synthesis. Renal serine production does not respond to the serine content of the diet.Key words: serine, glycine, kidney, amino acid metabolism.

1990 ◽  
Vol 268 (3) ◽  
pp. 799-802 ◽  
Author(s):  
A E Tedstone ◽  
V Ilic ◽  
D H Williamson

Measurements of the tissue accumulation in vivo and in vitro by hepatocytes and mammary-gland acini of alpha-amino[1-14C]isobutyrate ([1-14C]AIB) were compared in virgin and lactating rats. The results indicate the existence of a reciprocal relationship between mammary gland and liver for AIB accumulation that is dependent on the lactational and the nutritional state of the rat. This suggests that amino acids are preferentially directed to the mammary gland during active lactation.


2020 ◽  
Vol 13 (11) ◽  
pp. 398
Author(s):  
Elena V. Lukasheva ◽  
Marina G. Makletsova ◽  
Alexander N. Lukashev ◽  
Gulalek Babayeva ◽  
Anna Yu. Arinbasarova ◽  
...  

The fungal glycoprotein l-lysine α-oxidase (LO) catalyzes the oxidative deamination of l-lysine (l-lys). LO may be internalized in the intestine and shows antitumor, antibacterial, and antiviral effects in vivo. The main mechanisms of its effects have been shown to be depletion of the essential amino acid l-lys and action of reactive oxidative species produced by the reaction. Here, we report that LO penetrates into the brain and is retained there for up to 48 h after intravenous injection, which might be explained by specific pharmacokinetics. LO actively intervenes in amino acid metabolism in the brain. The most significant impact of LO was towards amino acids, which are directly exposed to its action (l-lys, l-orn, l-arg). In addition, the enzyme significantly affected the redistribution of amino acids directly associated with the tricarboxylic acid (TCA) cycle (l-asp and l-glu). We discovered that the depletion of l-orn, the precursor of polyamines (PA), led to a significant and long-term decrease in the concentration of polyamines, which are responsible for regulation of many processes including cell proliferation. Thus, LO may be used to reduce levels of l-lys and PA in the brain.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 449-451 ◽  
Author(s):  
G. Peter ◽  
H. Angst ◽  
U. Koch

Free and protein-bound amino acids in serum and scales were investigated. In serum the bound amino acids of psoriatics are significantly higher with exception of Pro, Met, Tyr and Phe in contrast to normal subjects. For free amino acids the differences between normal subjects and psoriatics found in serum and scales are not significant. Results are discussed in relation to the single amino acids and the biochemical correlations are outlined which takes the pathological process as a basis.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


PEDIATRICS ◽  
1961 ◽  
Vol 27 (4) ◽  
pp. 539-550 ◽  
Author(s):  
William L. Nyhan ◽  
Margaret Borden ◽  
Barton Childs

The amino acids of blood and urine have been investigated using chromatography on cation exchange columns in the study of a patient with idiopathic hyperglycinemia. Marked increases in concentrations of glycine, serine, alanine, isoleucine and valine were found in the plasma. These changes were not reflected in increased excretion of these amino acids in the urine (with the exception of glycine). Restriction of the dietary intake of protein resulted in a decrease in the concentrations of glycine and other amino acids in the blood and urine, and there was a concomitant decrease in the frequency and severity of episodes of acute illness. The oral administration of leucine was found to induce a decrease in the levels of a number of amino acids in the patient and in controls. Continued decrease during the 3 hours of observation was noted for serine, isoleucine and valine. A mild but progressive decrease in threonine concentration was observed in the controls, while in the patient the concentration increased after the administration of leucine. Decreased levels at 1½ hours, returning toward the fasting levels at 3 hours, were observed for alanine, taurine and glycine. These apparently normal responses to leucine loads were not mediated through increase in the urinary excretion of the amino acids involved, and the data are interpreted to indicate entry of these amino acids into cells.


2020 ◽  
Vol 318 (5) ◽  
pp. G912-G927
Author(s):  
Katrine D. Galsgaard ◽  
Jens Pedersen ◽  
Sasha A. S. Kjeldsen ◽  
Marie Winther-Sørensen ◽  
Elena Stojanovska ◽  
...  

Hepatic ureagenesis is essential in amino acid metabolism and is importantly regulated by glucagon, but the exact mechanism is unclear. With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we here show, contrary to our hypothesis, that glucagon receptor-mediated activation of ureagenesis is not required when N-acetylglutamate synthase activity and/or N-acetylglutamate levels are sufficient to activate the first step of the urea cycle in vivo.


Sign in / Sign up

Export Citation Format

Share Document