Airway smooth muscle contraction at birth: in vivo versus in vitro comparisons to the adult

1992 ◽  
Vol 70 (4) ◽  
pp. 590-596 ◽  
Author(s):  
John T. Fisher

It is clear from the literature that considerable postnatal development occurs in the contractile properties of skeletal and cardiac muscle. Nevertheless, few studies have focused on developmental changes in airway smooth muscle or on the functional capabilities of airway innervation in the newborn. Conclusions about force generation, based on measurements of pulmonary mechanics during stimulation of the vagus nerves, suggest that the newborn possesses a reduced capability to narrow airway diameter relative to the adult. This reduced in vivo response is accompanied by a reduction in maximal force generating capabilities when compared on the basis of force per unit tissue cross-sectional area (stress) in vitro. However, studies of porcine airways suggest that such a finding may simply reflect a reduction in the relative amount of contractile protein (myosin heavy chain) as seen in fetal or preterm smooth muscle. Thus, comparisons based on force normalized per cross-sectional area of myosin alter conclusions from one in which fetal tracheal smooth muscle generates less maximal force than the adult, to one in which the fetal trachea has greater contractile capabilities. Interestingly, comparisons of maximal isometric force in bronchial smooth muscle between different age groups remain unaffected when myosin heavy chain normalization is applied. Finally, there appears to be an age at which maximal force is significantly greater than at any other age, independent of the amount of smooth muscle (determined morphologically), smooth muscle myosin content, or myosin isoform. Whether this enhanced in vitro response is reflected in vivo, or is counteracted by other physiological mechanisms, remains to be seen.Key words: development, airway smooth muscle, lung resistance, force generation, normalization, myosin.

1995 ◽  
Vol 268 (2) ◽  
pp. L201-L206 ◽  
Author(s):  
C. Vannier ◽  
T. L. Croxton ◽  
L. S. Farley ◽  
C. A. Hirshman

Hypoxia dilates airways in vivo and reduces active tension of airway smooth muscle in vitro. To determine whether hypoxia impairs Ca2+ entry through voltage-dependent channels (VDC), we tested the ability of dihydropyridines to modulate hypoxia-induced relaxation of KCl- and carbamyl choline (carbachol)-contracted porcine bronchi. Carbachol- or KCl-contracted bronchial rings were exposed to progressive hypoxia in the presence or absence of 1 microM BAY K 8644 (an L-type-channel agonist). In separate experiments, rings were contracted with carbachol or KCl, treated with nifedipine (a VDC antagonist), and finally exposed to hypoxia. BAY K 8644 prevented hypoxia-induced relaxation in KCl-contracted bronchi. Nifedipine (10(-5) M) totally relaxed KCl- contracted bronchi. Carbachol-contracted bronchi were only partially relaxed by nifedipine but were completely relaxed when the O2 concentration of the gas was reduced from 95 to 0%. These data indicate that hypoxia can reduce airway smooth muscle tone by limiting entry of Ca2+ through a dihydropyridine-sensitive pathway, but that other mechanisms also contribute to hypoxia-induced relaxation of carbachol-contracted bronchi.


2021 ◽  
Vol 10 (12) ◽  
pp. 2721
Author(s):  
Nobuto Nakanishi ◽  
Shigeaki Inoue ◽  
Rie Tsutsumi ◽  
Yusuke Akimoto ◽  
Yuko Ono ◽  
...  

Ultrasound has become widely used as a means to measure the rectus femoris muscle in the acute and chronic phases of critical illness. Despite its noninvasiveness and accessibility, its accuracy highly depends on the skills of the technician. However, few ultrasound phantoms for the confirmation of its accuracy or to improve technical skills exist. In this study, the authors created a novel phantom model and used it for investigating the accuracy of measurements and for training. Study 1 investigated how various conditions affect ultrasound measurements such as thickness, cross-sectional area, and echogenicity. Study 2 investigated if the phantom can be used for the training of various health care providers in vitro and in vivo. Study 1 showed that thickness, cross-sectional area, and echogenicity were affected by probe compression strength, probe angle, phantom compression, and varying equipment. Study 2 in vitro showed that using the phantom for training improved the accuracy of the measurements taken within the phantom, and Study 2 in vivo showed the phantom training had a short-term effect on improving the measurement accuracy in a human volunteer. The new ultrasound phantom model revealed that various conditions affected ultrasound measurements, and phantom training improved the measurement accuracy.


1998 ◽  
Vol 275 (3) ◽  
pp. C870-C881 ◽  
Author(s):  
Ichiro Hisatome ◽  
Takayuki Morisaki ◽  
Hiroshi Kamma ◽  
Takako Sugama ◽  
Hiroko Morisaki ◽  
...  

AMP deaminase (AMPD) plays a central role in preserving the adenylate energy charge in myocytes following exercise and in producing intermediates for the citric acid cycle in muscle. Prior studies have demonstrated that AMPD1 binds to myosin heavy chain (MHC) in vitro; binding to the myofibril varies with the state of muscle contraction in vivo, and binding of AMPD1 to MHC is required for activation of this enzyme in myocytes. The present study has identified three domains in AMPD1 that influence binding of this enzyme to MHC using a cotransfection model that permits assessment of mutations introduced into the AMPD1 peptide. One domain that encompasses residues 178–333 of this 727-amino acid peptide is essential for binding of AMPD1 to MHC. This region of AMPD1 shares sequence similarity with several regions of titin, another MHC binding protein. Two additional domains regulate binding of this peptide to MHC in response to intracellular and extracellular signals. A nucleotide binding site, which is located at residues 660–674, controls binding of AMPD1 to MHC in response to changes in intracellular ATP concentration. Deletion analyses demonstrate that the amino-terminal 65 residues of AMPD1 play a critical role in modulating the sensitivity to ATP-induced inhibition of MHC binding. Alternative splicing of the AMPD1 gene product, which alters the sequence of residues 8–12, produces two AMPD1 isoforms that exhibit different MHC binding properties in the presence of ATP. These findings are discussed in the context of the various roles proposed for AMPD in energy production in the myocyte.


1989 ◽  
Vol 122 (1) ◽  
pp. 193-200 ◽  
Author(s):  
N. K. Green ◽  
J. A. Franklyn ◽  
J. A. O. Ahlquist ◽  
M. D. Gammage ◽  
M. C. Sheppard

ABSTRACT The effect of tri-iodothyronine (T3) treatment on myocardial levels of α and β myosin heavy chain (MHC) mRNAs in the rat was defined in vivo and in vitro. Dose–response experiments were performed in intact hypothyroid and euthyroid rats; in addition, studies in vitro examined the effect of T3 on MHC mRNAs in neonatal cardiac myocytes in primary culture. Specific α and β MHC mRNAs were determined by Northern blot and dot hybridization to oligonucleotide probes complementary to the 3′ untranslated regions of the MHC genes. An increase in myocardial β MHC mRNA was demonstrated in hypothyroidism, accompanied by a reduction in α MHC mRNA. Marked differences in the sensitivity of α and β MHC mRNAs to T3 replacement were found; a dose-dependent increase in α mRNA was evident at 6 h after T3 treatment, in the absence of consistent effects on β mRNA, whereas 72 h after T3 replacement was commenced, stimulatory effects of T3 on α MHC mRNA, evident at all doses, were accompanied by a dose-dependent inhibition of β MHC mRNA. No effect of thyroid status on actin mRNA was found, indicating the specificity of MHC gene regulation. T3 treatment of cardiac myocytes in vitro exerted similar actions on MHC mRNAs to those found in vivo, with a more marked influence on α than β MHC mRNA. These studies of the action of T3 in vivo and in vitro have thus demonstrated specific effects of T3 on pretranslational regulation of the α and β MHC genes, influences which differ not only in terms of stimulation or inhibition, but also in magnitude of effect. Journal of Endocrinology (1989) 122, 193–200


2018 ◽  
Vol 51 (5) ◽  
pp. 1701680 ◽  
Author(s):  
Igor L. Chernyavsky ◽  
Richard J. Russell ◽  
Ruth M. Saunders ◽  
Gavin E. Morris ◽  
Rachid Berair ◽  
...  

Bronchial thermoplasty is a treatment for asthma. It is currently unclear whether its histopathological impact is sufficiently explained by the proportion of airway wall that is exposed to temperatures necessary to affect cell survival.Airway smooth muscle and bronchial epithelial cells were exposed to media (37–70°C) for 10 s to mimic thermoplasty. In silico we developed a mathematical model of airway heat distribution post-thermoplasty. In vivo we determined airway smooth muscle mass and epithelial integrity pre- and post-thermoplasty in 14 patients with severe asthma.In vitro airway smooth muscle and epithelial cell number decreased significantly following the addition of media heated to ≥65°C. In silico simulations showed a heterogeneous heat distribution that was amplified in larger airways, with <10% of the airway wall heated to >60°C in airways with an inner radius of ∼4 mm. In vivo at 6 weeks post-thermoplasty, there was an improvement in asthma control (measured via Asthma Control Questionnaire-6; mean difference 0.7, 95% CI 0.1–1.3; p=0.03), airway smooth muscle mass decreased (absolute median reduction 5%, interquartile range (IQR) 0–10; p=0.03) and epithelial integrity increased (14%, IQR 6–29; p=0.007). Neither of the latter two outcomes was related to improved asthma control.Integrated in vitro and in silico modelling suggest that the reduction in airway smooth muscle post-thermoplasty cannot be fully explained by acute heating, and nor did this reduction confer a greater improvement in asthma control.


1995 ◽  
Vol 108 (4) ◽  
pp. 1779-1789 ◽  
Author(s):  
K.C. Chang ◽  
K. Fernandes ◽  
M.J. Dauncey

Members of the myosin heavy chain (MyHC) gene family show developmental stage- and spatial-specificity of expression. We report on the characterization and identification of a porcine skeletal fast MyHC gene, including its corresponding 5′ end cDNA and 5′ regulatory region. This MyHC isoform was found exclusively in skeletal muscles from about the last quarter of gestation through to adulthood. Expression of this isoform was higher postnatally and its spatial distribution resembled a rosette cluster; each with a ring of fast fibres surrounding a central slow fibre. This rosette pattern was absent in the adult diaphragm but about 20% of the fibres continued to express this MyHC isoform. Further in vivo expression studies, in a variety of morphologically and functionally diverse muscles, showed that this particular skeletal MyHC isoform was expressed in fast oxidative-glycolytic fibres, suggesting that it was the equivalent of the fast IIA isoform. Two domains in the upstream regulatory region were found to confer differentiation-specific expression on C2 myotubes (−1007 to -828 and -455 to -101), based on in vitro transient expression assays using the chloramphenicol acetyltransferase (CAT) reporter gene. Interestingly, for high levels of CAT expression to occur, a 3′ region, extending from the transcriptional start site to part. of intron 2, must be present in all the DNA constructs used.


Author(s):  
Ynuk Bossé

The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.


1995 ◽  
Vol 269 (1) ◽  
pp. H86-H95 ◽  
Author(s):  
E. Holder ◽  
B. Mitmaker ◽  
L. Alpert ◽  
L. Chalifour

Transgenic mice expressing polyomavirus large T antigen (PVLT) in cardiomyocytes develop a cardiac hypertrophy in adulthood. Morphometric analysis identified cardiomyocytes enlarged up to ninefold in cross-sectional area in the adult transgenic hearts compared with normal age-matched nontransgenic hearts. Most enlarged cardiomyocytes were found in the subendocardium, whereas normal-sized cardiomyocytes were localized to the midmyocardium. Transgenic hearts did not express detectable skeletal muscle actin mRNA or protein, or skeletal troponin I isoform mRNA. Some, but not all, transgenic hearts expressed an increase in the beta-myosin heavy chain mRNA. All five transgenic mice tested had increased expression of atrial natriuretic factor (ANF) mRNA. Whereas normal hearts expressed three myosin light chain proteins of 19, 16, and 15 kDa, we found that the 19-kDa myosin light chain was not observed in the transgenic hearts. We conclude that adult, PVLT-expressing, transgenic mice developed enlarged cardiomyocytes with an increase in beta-myosin heavy chain and ANF mRNA expression, but a widespread skeletal isoform usage was not present in these transgenic mice. The adult transgenic hearts thus display histological and molecular changes similar to those found in hypertrophy induced by a pressure overload in vivo.


2003 ◽  
Vol 95 (1) ◽  
pp. 448-453 ◽  
Author(s):  
Jahanbakhsh Naghshin ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

It has been shown that airway smooth muscle in vitro is able to maintain active force over a large length range by adaptation in the absence of periodic stimulations at 4°C (Wang L, Paré PD, and Seow CY. J Appl Physiol 90: 734–740, 2001). In this study, we show that such adaptation also takes place at body temperature and that long-term adaptation results in irreversible functional change in the muscle that could lead to airway hyperresponsiveness. Rabbit tracheal muscle explants were passively maintained at shortened and in situ length for 3 and 7–8 days in culture media; the length-tension relationship was then examined. The length associated with maximal force generation decreased by 10.5 ± 3.8% (SE) after 3 days and 37.7 ± 8.5% after 7 or 8 days of passive shortening. At day 3, the left shift in the length-tension curve due to adaptation at short lengths was reversible by readapting the muscle at a longer length. The shift was, however, not completely reversible after 7 days. The results suggest that long-term adaptation of airway smooth muscle could lead to increased muscle stiffness and force-generating ability at short lengths. Under in vivo condition, this could translate into resistance to stretch-induced relaxation and excessive airway narrowing.


Sign in / Sign up

Export Citation Format

Share Document