Endurance training alters antioxidant enzyme gene expression in rat skeletal muscle

1998 ◽  
Vol 76 (12) ◽  
pp. 1139-1145 ◽  
Author(s):  
M Gore ◽  
R Fiebig ◽  
J Hollander ◽  
C Leeuwenburgh ◽  
H Ohno ◽  
...  

The effects of endurance training on gene expression of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were investigated in type 2a and 2b skeletal muscles, as well as heart and liver, in the rat. Female Sprague-Dawley rats (4 months old, 300-320 g) were randomly divided into a trained (T, n = 11) and a control (C, n = 10) group and were pair fed a diet consisting of 66% cornstarch and 34% basal diet that contained all essential nutrients. Training was conducted on a treadmill at 25 m·min-1, 10% grade for 2 h per day, 5 days per week for 10 weeks, resulting in a 79% (p < 0.01) increase in citrate synthase activity in the deep portion of vastus lateralis muscle (DVL, type 2a). Cu-Zn SOD activity was 35% higher (p < 0.01) in DVL of T versus C rats, and Cu-Zn SOD mRNA abundance showed a 125% increase with training (p < 0.05). Cu-Zn SOD protein content was not altered in DVL, but increased significantly (p < 0.05) in the superficial portion of vastus lateralis (type 2b) with training. Trained rats showed a 66% higher (p < 0.05) Mn SOD protein content in DVL, but Mn SOD activity and mRNA abundance were not affected. Training also significantly increased GPX activity by 62% (p < 0.05), without changing its mRNA abundance, in the DVL. Heart and liver showed a 112 and 58% increase (p < 0.01) in Cu-Zn SOD mRNA abundance with training, respectively, but no other training adaptation was detected. These data indicate that endurance training can promote gene expression of muscle antioxidant enzymes in a fiber-specific manner. Training appears to upregulate Cu-Zn SOD mRNA abundance in a number of aerobic tissues, whereas Mn SOD and GPX induction observed in DVL may occur at the post-transcriptional levels.Key words: glutathione peroxidase, mRNA, skeletal muscle superoxide dismutase, training.

1999 ◽  
Vol 277 (3) ◽  
pp. R856-R862 ◽  
Author(s):  
J. Hollander ◽  
R. Fiebig ◽  
M. Gore ◽  
J. Bejma ◽  
T. Ookawara ◽  
...  

The effects of endurance training on the enzyme activity, protein content, and mRNA abundance of Mn and CuZn superoxide dismutase (SOD) were studied in various phenotypes of rat skeletal muscle. Female Sprague-Dawley rats were randomly divided into trained (T, n = 8) and untrained (U, n = 8) groups. Training, consisting of treadmill running at 27 m/min and 12% grade for 2 h/day, 5 days/wk for 10 wk, significantly increased citrate synthase activity ( P < 0.01) in the type I (soleus), type IIa (deep vastus lateralis, DVL), and mixed type II (plantaris) muscles but not in type IIb (superficial vastus lateralis, SVL) muscle. Mitochondrial (Mn) SOD activity was elevated by 80% ( P < 0.05) with training in DVL. SVL and plantaris muscle in T rats showed 54 and 42% higher pooled immunoreactive Mn SOD protein content, respectively, than those in U rats. However, no change in Mn SOD mRNA level was found in any of the muscles. CuZn SOD activity, protein content, and mRNA level in general were not affected by training, except for a 160% increase in pooled CuZn SOD protein in SVL. Training also significantly increased glutathione peroxidase and catalase activities ( P < 0.05), but only in DVL muscle. These data indicate that training adaptations of Mn SOD and other antioxidant enzymes occur primarily in type IIa fibers, probably as a result of enhanced free radical generation and modest antioxidant capacity. Differential training responses of mRNA, enzyme protein, and activity suggest that separate cellular signals may control pre- and posttranslational regulation of SOD.


2014 ◽  
Vol 221 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Cynthia L Blanco ◽  
Alvaro G Moreira ◽  
Lisa L McGill-Vargas ◽  
Diana G Anzueto ◽  
Peter Nathanielsz ◽  
...  

We hypothesize that prenatal exposure to glucocorticoids (GCs) negatively alters the insulin signal transduction pathway and has differing effects on the fetus according to gestational age (GA) at exposure. Twenty-three fetal baboons were delivered from 23 healthy, nondiabetic mothers. Twelve preterm (0.67 GA) and 11 near-term (0.95 GA) baboons were killed immediately after delivery. Half of the pregnant baboons at each gestation received two doses of i.m. betamethasone 24 h apart (170 μg/kg) before delivery, while the other half received no intervention. Vastus lateralis muscle was obtained from postnatal animals to measure the protein content and gene expression of insulin receptor β (IRβ; INSR), IRβ Tyr 1361 phosphorylation (pIRβ), IR substrate 1 (IRS1), IRS1 tyrosine phosphorylation (pIRS1), p85 subunit of PI3-kinase, AKT (protein kinase B), phospho-AKT Ser473 (pAKT), AKT1, AKT2, and glucose transporters (GLUT1 and GLUT4). Skeletal muscle from preterm baboons exposed to GCs had markedly reduced protein content of AKT and AKT1 (respectively, 73 and 72% from 0.67 GA control, P<0.001); IRβ and pIRβ were also decreased (respectively, 94 and 85%, P<0.01) in the muscle of premature GC-exposed fetuses but not in term fetuses. GLUT1 and GLUT4 tended to increase with GC exposure in preterm animals (P=0.09), while GLUT4 increased sixfold in term animals after exposure to GC (P<0.05). In conclusion, exposure to a single course of antenatal GCs during fetal life alters the insulin signaling pathway in fetal muscle in a manner dependent on the stage of gestation.


2014 ◽  
Vol 116 (11) ◽  
pp. 1503-1511 ◽  
Author(s):  
Noni T. Frankenberg ◽  
Graham D. Lamb ◽  
Kristian Vissing ◽  
Robyn M. Murphy

Through its upregulation and/or translocation, heat shock protein 72 (HSP72) is involved in protection and repair of key proteins after physiological stress. In human skeletal muscle we investigated HSP72 protein after eccentric (ECC1) and concentric (CONC) exercise and repeated eccentric exercise (ECC2; 8 wk later) and whether it translocated from its normal cytosolic location to membranes/myofibrils. HSP72 protein increased ∼2-fold 24 h after ECC1, with no apparent change after CONC or ECC2. In resting (nonstressed) human skeletal muscle the total pool of HSP72 protein was present almost exclusively in the cytosolic fraction, and after each exercise protocol the distribution of HSP72 protein remained unaltered. Overall, the amount of HSP72 protein in the cytosol increased 24 h after ECC1, matching the fold increase that was measured in total HSP72 protein. To better ascertain the capabilities and limitations of HSP72, using quantitative Western blotting we determined the HSP72 protein content to be 11.4 μmol/kg wet weight in resting human vastus lateralis muscle, which is comprised of Type I (slow-twitch) and Type II (fast-twitch) fibers. HSP72 protein content was similar in individual Type I or II fiber segments. After physiological stress, HSP72 content can increase and, although the functional consequences of increased amounts of HSP72 protein are poorly understood, it has been shown to bind to and protect protein pumps like SERCA and Na+-K+-ATPase. Given no translocation of cytosolic HSP72, these findings suggest eccentric contractions, unlike other forms of stress such as heat, do not trigger tight binding of HSP72 to its primary membrane-bound target proteins, in particular SERCA.


1997 ◽  
Vol 272 (1) ◽  
pp. R363-R369 ◽  
Author(s):  
C. Leeuwenburgh ◽  
J. Hollander ◽  
S. Leichtweis ◽  
M. Griffiths ◽  
M. Gore ◽  
...  

The effect of endurance training on glutathione (GSH) status and antioxidant enzyme system was investigated in skeletal muscle, heart, and liver of female Sprague-Dawley rats pair fed an isocaloric diet. Ten weeks of treadmill training (25 m/min, 10% grade for 2 h/day, 5 days/wk) increased citrate synthase activity in the deep vastus lateralis (DVL) and soleus muscles by 79 and 39%, respectively (P < 0.01), but not in the heart or liver. In DVL, GSH content was increased 33% (P < 0.05) with training, accompanied by a 64% (P < 0.05) increase in glutamate content but no change in cysteine. Trained rats showed a 62 and 27% higher GSH peroxidase (GPX) and superoxide dismutase (SOD) activity, respectively (P < 0.05), in DVL compared with control rats. In contrast, GSH content and glutathione reductase (GR) activity in soleus declined with training (P < 0.05), whereas activities of GPX and SOD remained unchanged. Training did not alter GSH status in the liver or plasma but significantly decreased the GSH-to glutathione disulfide ratio in the heart. In addition, GR activity in the liver and GSH sulfur-transferase activity in the heart and DVL were significantly lower in the trained vs control rats DVL muscle had threefold higher gamma-glutamyl transpeptidase activity compared with other tissues; however no significant alteration was observed in the activity of gamma-glutamyltranspeptidase or gamma-glutamylcysteine synthetase in the liver, heart, or skeletal muscle. These data indicate that endurance training can cause tissue- and muscle fiber-specific adaptation of antioxidant systems and that GSH homeostasis in extrahepatic tissues may be determined by utilization and uptake of GSH via the gamma-glutamyl cycle.


2013 ◽  
Vol 115 (6) ◽  
pp. 937-948 ◽  
Author(s):  
Edward K. Merritt ◽  
Michael J. Stec ◽  
Anna Thalacker-Mercer ◽  
Samuel T. Windham ◽  
James M. Cross ◽  
...  

The regenerative response of skeletal muscle to mechanically induced damage is impaired with age. Previous work in our laboratory suggests this may result from higher proinflammatory signaling in aging muscle at rest and/or a greater inflammatory response to damage. We, therefore, assessed skeletal muscle proinflammatory signaling at rest and 24 h after unaccustomed, loaded knee extension contractions that induced modest muscle damage (72% increase in serum creatine kinase) in a cohort of 87 adults across three age groups (AGE40, AGE61, and AGE76). Vastus lateralis muscle gene expression and protein cell signaling of the IL-6 and TNF-α pathways were determined by quantitative PCR and immunoblot analysis. For in vitro studies, cell signaling and fusion capacities were compared among primary myoblasts from young (AGE28) and old (AGE64) donors treated with TNF-α. Muscle expression was higher (1.5- to 2.1-fold) in AGE76 and AGE61 relative to AGE40 for several genes involved in IL-6, TNF-α, and TNF-like weak inducer of apoptosis signaling. Indexes of activation for the proinflammatory transcription factors signal transducer and activator of transcription-3 and NF-κB were highest in AGE76. Resistance loading reduced gene expression of IL-6 receptor, muscle RING finger 1, and atrogin-1, and increased TNF-like weak inducer of apoptosis receptor expression. Donor myoblasts from AGE64 showed impaired differentiation and fusion in standard media and greater NF-κB activation in response to TNF-α treatment (compared with AGE28). We show for the first time that human aging is associated with muscle inflammation susceptibility (i.e., higher basal state of proinflammatory signaling) that is present in both tissue and isolated myogenic cells and likely contributes to the impaired regenerative capacity of skeletal muscle in the older population.


1992 ◽  
Vol 70 (9) ◽  
pp. 1286-1290 ◽  
Author(s):  
P. D. Neufer ◽  
M. H. Shinebarger ◽  
G. L. Dohm

The aim of the present study was to examine the effects of treadmill exercise training and detraining on the skeletal muscle fiber type specific expression of the insulin-regulated glucose transporter protein (GLUT4) in rats. GLUT4 protein content was determined by Western and dot-blot analysis, using a polyclonal antibody raised against the carboxy-terminal peptide. Rats were sacrificed 24 h after the last training session. There were no significant changes in muscle GLUT4 after 1 day or 1 week of training. Six weeks of training increased GLUT4 protein content 1.4- to 1.7-fold (p < 0.05) over controls in the soleus and red vastus lateralis, whereas no significant change was evident in the white vastus lateralis muscle. GLUT4 protein content in both soleus and red vastus lateralis muscle returned to near control values after 7 days of detraining. Similar to GLUT4, citrate synthase activity showed no change after 1 day or 1 week of training, increased 1.8-fold over controls after 6 weeks of training, but returned to control values after 7 days detraining. These findings demonstrate that muscle GLUT4 protein is increased in rats with as little as 6 weeks of treadmill exercise training but that the adaptation is lost within 1 week of detraining. It is suggested that expression of the GLUT4 protein is coordinated with the well-documented adaptations in oxidative enzyme activity with endurance training and detraining.Key words: insulin-regulated glucose transporter protein, citrate synthase.


2001 ◽  
Vol 90 (3) ◽  
pp. 1031-1035 ◽  
Author(s):  
Muna Khassaf ◽  
Robert B. Child ◽  
Anne McArdle ◽  
David A. Brodie ◽  
Cristian Esanu ◽  
...  

Previous studies in animals have demonstrated that a single period of aerobic exercise induces a rise in the skeletal muscle activity of the antioxidant enzymes superoxide dismutase and catalase and an increase in the muscle content of heat shock proteins (HSPs). The purpose of this study was to examine the time course of response of human skeletal muscle superoxide dismutase and catalase activities and the content of HSP60 and HSP70 after a period of exhaustive, nondamaging aerobic exercise. Seven volunteers undertook one-legged cycle ergometry at 70% maximal oxygen uptake for 45 min. Biopsies were obtained from the vastus lateralis muscle 7 days before and at 1, 2, 3, and 6 days after exercise. Muscle superoxide dismutase activity increased to a peak at 3 days postexercise, muscle catalase activities were unchanged, and muscle content of HSP60 and the inducible HSP70 increased by variable amounts to reach means of 190% and 3,100% of preexercise values, respectively, by 6 days postexercise. These data indicate that human skeletal muscle responds to a single bout of nondamaging exercise by increasing superoxide dismutase activity and provide the first evidence of an increase in HSP content of human skeletal muscle after a submaximal exercise bout.


2008 ◽  
Vol 32 (2) ◽  
pp. 219-228 ◽  
Author(s):  
Adeel Safdar ◽  
Nicholas J. Yardley ◽  
Rodney Snow ◽  
Simon Melov ◽  
Mark A. Tarnopolsky

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day × 3 days; maintenance phase, 5 g/day × 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants ( P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.


2011 ◽  
Vol 111 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Lorenzo K. Love ◽  
Paul J. LeBlanc ◽  
J. Greig Inglis ◽  
Nicolette S. Bradley ◽  
Jon Choptiany ◽  
...  

Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity ( r2 = 0.399, P = 0.001) and PDP1 protein expression ( r2 = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α ( r2 = 0.310, P = 0.002) and PDK2 protein ( r2 = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼18% of the variance in PDP activity ( r2 = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼38% of the variance in PDP activity ( r2 = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity).


Sign in / Sign up

Export Citation Format

Share Document