Amplification of calcium signals at dendritic spines provides a method for CNS quantal analysis

1999 ◽  
Vol 77 (9) ◽  
pp. 651-659 ◽  
Author(s):  
Sabrina Wang ◽  
Oliver Prange ◽  
Timothy H Murphy

It has been proposed that the small volume of a dendritic spine can amplify Ca2+ signals during synaptic transmission. Accordingly, we have performed calculations to determine whether the activation of N-methyl-D-aspartate (NMDA) type glutamate receptors during synaptic transmission results in significant elevation in intracellular Ca2+ levels, permitting optical detection of synaptic signals within a single spine. Simple calculations suggest that the opening of even a single NMDA receptor would result in the influx of ~ 310 000 Ca2+ ions into the small volume of a spine, producing changes in Ca2+ levels that are readily detectable using high affinity Ca2+ indicators such as fura-2 or fluo-3. Using fluorescent Ca2+ indicators, we have imaged local Ca2+ transients mediated by NMDA receptors in spines and dendritic shafts attributed to spontaneous miniature synaptic activity. Detailed analysis of these quantal events suggests that the current triggering these transients is attributed to the activation of <10 NMDA receptors. The frequency of these miniature synaptic Ca2+ transients is not randomly distributed across synapses, as some synapses can display a >10-fold higher frequency of transients than others. As expected for events mediated by NMDA receptors, miniature synaptic Ca2+ transients were suppressed by extracellular Mg2+ at negative membrane potentials; however, the Mg2+ block could be removed by depolarization.Key words: miniature release, N-methyl-D-aspartate (NMDA), calcium, glutamate, spine.

2020 ◽  
Author(s):  
Johansen Amin ◽  
Aaron Gochman ◽  
Miaomiao He ◽  
Noele Certain ◽  
Lonnie P. Wollmuth

ABSTRACTNMDA receptors (NMDAR) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmission in the nervous system. A central feature of NMDAR physiology is the opening of the ion channel driven by presynaptically-released glutamate. Using glutamate applications to outside-out patches containing a single NMDAR in the continuous presence of the co-agonist glycine, we find that agonist-bound receptors transition to the open state via two conformations, an ‘unconstrained pre-active’ state that can rapidly transition to the open state and contributes to synaptic events, and a ‘constrained pre-active’ state that requires more energy and hence time to open and does not contribute to fast signaling. To define how agonist binding might drive these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for the GluN1 and GluN2A subunits. Displacements of the central pore-forming M3 segments define the energy of fast channel opening. However, to enter the unconstrained conformation and contribute to fast signaling, a peripheral helix, the GluN2 pre-M1, must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of another nearby peripheral element, the GluN1 and GluN2A S2-M4. We conclude that peripheral structural elements – pre-M1 and S2-M4 – work in concert to remove constraints and prime the channel for rapid opening, thus facilitating fast synaptic transmission.


2002 ◽  
Vol 88 (1) ◽  
pp. 289-299 ◽  
Author(s):  
Lorenzo Cangiano ◽  
Peter Wallén ◽  
Sten Grillner

Single motoneurons and pairs of a presynaptic reticulospinal axon and a postsynaptic motoneuron were recorded in the isolated lamprey spinal cord, to investigate the role of calcium-dependent K+ channels (KCa) during the afterhyperpolarization following the action potential (AHP), and glutamatergic synaptic transmission on the dendritic level. The AHP consists of a fast phase due to transient K+ channels (fAHP) and a slower phase lasting 100–200 ms (sAHP), being the main determinant of spike frequency regulation. We now present evidence that the sAHP has two components. The larger part, around 80%, is abolished by superfusion of Cd2+ (blocker of voltage-dependent Ca2+ channels), by intracellular injection of 1,2-bis-( 2-aminophenoxy)-ethane- N,N,N′,N′-tetraacetic acid (BAPTA; fast Ca2+ chelator), and by apamin (selective toxin for KCa channels of the SK subtype). While 80% of the sAHP is thus due to KCa channels, the remaining 20% is not mediated by Ca2+, either entering through voltage-dependent Ca2+ channels or released from intracellular Ca2+ stores. This Ca2+-independent sAHP component has a similar time course as the KCa portion and is not due to a Cl− conductance. It may be caused by Na+-activated K+ channels. Glutamatergic excitatory postsynaptic potentials (EPSPs) evoked by single reticulospinal axons give rise to a local Ca2+ increase in the postsynaptic dendrite, mediated in part by N-methyl-d-aspartate (NMDA) receptors. The Ca2+ levels remain elevated for several hundred milliseconds and could be expected to activate KCa channels. If so, this activation should cause a local conductance increase in the dendrite that would shunt EPSPs following the first EPSP in a spike train. We have tested this in reticulospinal/motoneuronal pairs, by stimulating the presynaptic axon with spike trains at different frequencies. We compared the first EPSP and the following EPSPs in the control and after blockade with apamin. No difference was observed in EPSP amplitude or shape before and after apamin, either in normal Ringer or in Mg2+-free Ringer removing the voltage-dependent block of NMDA receptors. In conclusion, the local Ca2+ entry during reticulospinal EPSPs does not cause an activation of KCa channels sufficient to affect the efficacy of synaptic transmission. Thus the integration of synaptic signals at the dendritic level in motoneurons appears simpler than would otherwise have been the case.


Author(s):  
Joseph P. Steiner ◽  
Kathryn B. Payne ◽  
Christopher Drummond Main ◽  
Sabrina D'Alfonso ◽  
Kirsten X. Jacobsen ◽  
...  

Background:Previously we showed that 6-hydroxydopamine lesions of the substantia nigra eliminate corticostriatal LTP and that the neuroimmunolophilin ligand (NIL), GPI-1046, restores LTP.Methods:We used cDNA microarrays to determine what mRNAs may be over- or under-expressed in response to lesioning and/or GPI-1046 treatment. Patch clamp recordings were performed to investigate changes in NMDA channel function before and after treatments.Results:We found that 51 gene products were differentially expressed. Among these we found that GPI-1046 treatment up-regulated presenilin-1 (PS-1) mRNA abundance. This finding was confirmed using QPCR. PS-1 protein was also shown to be over-expressed in the striatum of lesioned/GPI-1046-treated rats. As PS-1 has been implicated in controlling NMDA-receptor function and LTP is reduced by lesioning we assayed NMDA mediated synaptic activity in striatal brain slices. The lesion-induced reduction of dopaminergic innervation was accompanied by the near complete loss of NDMA receptor-mediated synaptic transmission between the cortex and striatum. GPI-1046 treatment of the lesioned rats restored NMDA-mediated synaptic transmission but not the dopaminergic innervation. Restoration of NDMA channel function was apparently specific as the sodium channel current density was also reduced due to lesioning but GPI-1046 did not reverse this effect. We also found that restoration of NMDA receptor function was also not associated with either an increase in NMDA receptor mRNA or protein expression.Conclusion:As it has been previously shown that PS-1 is critical for normal NMDA receptor function, our data suggest that the improvement of excitatory neurotransmission occurs through the GPI-1046-induced up-regulation of PS-1.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xinyan Gao ◽  
Yongfa Qiao ◽  
Baohui Jia ◽  
Xianghong Jing ◽  
Bin Cheng ◽  
...  

Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs). Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic-acid-(AMPA-) receptor-(AMPAR-) mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). We also identified that suppression of presynapticμ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A-) containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farhan Ali ◽  
Danielle M. Gerhard ◽  
Katherine Sweasy ◽  
Santosh Pothula ◽  
Christopher Pittenger ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20634-x


PEDIATRICS ◽  
1985 ◽  
Vol 76 (2) ◽  
pp. 250-254
Author(s):  
Warwick W. Butt ◽  
Robert Gow ◽  
Hilary Whyte ◽  
Jeffrey Smallhorn ◽  
Gideon Koren

Arterial catheters, routinely used in neonatal intensive care units, have been associated with serious complications. In the present studies, retrograde blood flow occurring during routine flushing of peripheral and umbilical catheters is described. This retrograde flow is associated with a significant elevation of blood pressure at distant sites. These phenomena depend on the volume flushed and on the velocity of the flushing process. These phenomena can be prevented by flushing a small volume of 0.5 mL for a period of five seconds.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Ramón A. Lorca ◽  
Lorena Varela-Nallar ◽  
Nibaldo C. Inestrosa ◽  
J. Pablo Huidobro-Toro

Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPCbinds Cu2+through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+of the adenosine triphosphate (ATP)-evoked currents in the P2X4receptor subtype, highlighting a modulatory role for PrPCin synaptic transmission through regulation of Cu2+levels. Here, we study the effect of full-length PrPCin Cu2+inhibition of P2X4receptor when both are coexpressed. PrPCexpression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4receptors. However, the presence of PrPCreduces the inhibition by Cu2+of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+binding domain. Thus, our observations suggest a role for PrPCin modulating synaptic activity through binding of extracellular Cu2+.


2011 ◽  
Vol 106 (2) ◽  
pp. 710-721 ◽  
Author(s):  
Sunil A. Desai ◽  
Gregory A. Lnenicka

Postsynaptic intracellular Ca2+ concentration ([Ca2+]i) has been proposed to play an important role in both synaptic plasticity and synaptic homeostasis. In particular, postsynaptic Ca2+ signals can alter synaptic efficacy by influencing transmitter release, receptor sensitivity, and protein synthesis. We examined the postsynaptic Ca2+ transients at the Drosophila larval neuromuscular junction (NMJ) by injecting the muscle fibers with Ca2+ indicators rhod-2 and Oregon Green BAPTA-1 (OGB-1) and then monitoring their increased fluorescence during synaptic activity. We observed discrete postsynaptic Ca2+ transients along the NMJ during single action potentials (APs) and quantal Ca2+ transients produced by spontaneous transmitter release. Most of the evoked Ca2+ transients resulted from the release of one or two quanta of transmitter and occurred largely at synaptic boutons. The magnitude of the Ca2+ signals was correlated with synaptic efficacy; the Is terminals, which produce larger excitatory postsynaptic potentials (EPSPs) and have a greater quantal size than Ib terminals, produced a larger Ca2+ signal per terminal length and larger quantal Ca2+ signals than the Ib terminals. During a train of APs, the postsynaptic Ca2+ signal increased but remained localized to the postsynaptic membrane. In addition, we showed that the plasma membrane Ca2+-ATPase (PMCA) played a role in extruding Ca2+ from the postsynaptic region of the muscle. Drosophila melanogaster has a single PMCA gene, predicted to give rise to various isoforms by alternative splicing. Using RT-PCR, we detected the expression of multiple transcripts in muscle and nervous tissues; the physiological significance of the same is yet to be determined.


Sign in / Sign up

Export Citation Format

Share Document