New information on the eggshell of ratites (Aves) and its phylogenetic implications

2003 ◽  
Vol 81 (6) ◽  
pp. 962-970 ◽  
Author(s):  
Darla K Zelenitsky ◽  
Sean P Modesto

A reappraisal of the eggshell of ratites clarifies aspects of its microstructure and ultrastructure. The phylogenetic usefulness of the eggshell data, consisting of discrete characters, is assessed using eggshell characters alone and by adding the eggshell characters to a data matrix from the literature based on skeletal characters. The resultant tree from the eggshell data alone yields Apteryx as the most basal ratite, dinornithids as the sister taxon of a clade of large living ratites, with Casuarius and Dromaius in a sister-group relationship. The combined eggshell and skeletal analysis revealed most groupings within Ratitae that were based on previous cladistic analysis of the skeletal characters alone, but also supports two equally parsimonious topologies: one identifies Dinornithidae and Apteryx as a clade at the base of Ratitae, and the other identifies Apteryx as the sister taxon of a clade consisting of all the other ratites. It is determined that the characteristics used to define the improperly named "ratite morphotype" in the current eggshell parataxonomy are not synapomorphies of the eggshell of Ratitae. An expanded cladistic analysis of the eggshells of avian and non-avian theropods is required to determine the phylogenetic usefulness of the characteristics of the ratite morphotype.

1992 ◽  
Vol 335 (1274) ◽  
pp. 207-219 ◽  

Sphenodon has traditionally been regarded as a little changed survivor of the Permo-Triassic thecodont or eosuchian ‘stem reptiles’ but has alternatively been placed in the Lepidosauria as the plesiomorphic or even apomorphic sister-taxon of the squamates. A cladistic analysis of 16 characters from spermatozoal ultrastructure of Sphenodon and other amniotes unequivocally confirms its exceedingly primitive status. The analysis suggests that monotremes are the sister-group of birds; squamates form the sister-group of a bird + monotreme clade while the three sister-groups successively below the bird + monotreme + squa- mate assemblage are the caiman, the tuatara and the outgroup (turtles). The monotreme + bird couplet, supports the concept of the Haemothermia, but can only be regarded heuristically. The usual concept of mammals as a synapsid-derived outgroup of all other extant amniotes is not substantiated spermatologically. All cladistic analyses made, and a separate consideration of apomorphies, indicate that Sphenodon is spermatologically the most primitive amniote, excepting the Chelonia. It is advanced (apomorphic) for the amniotes in only two of the 16 spermatozoal characters considered. A close, sister-group relationship of Sphenodon with squamates is not endorsed.


Zootaxa ◽  
2018 ◽  
Vol 4392 (1) ◽  
pp. 149 ◽  
Author(s):  
RODRIGO TEMP MÜLLER ◽  
MAX CARDOSO LANGER ◽  
SÉRGIO DIAS-DA-SILVA

Despite representing a key-taxon in dinosauromorph phylogeny, Lagerpertidae is one of the most obscure and enigmatic branches from the stem that leads to the dinosaurs. Recent new findings have greatly increased our knowledge about lagerpetids, but no phylogenetic analysis has so far included all known members of this group. Here, we present the most inclusive phylogenetic study so far conducted for Lagerpetidae. Phylogenetic analyses were performed based on three independent data matrixes. In two of them, Lagerpeton chanarensis Romer, 1971 is the sister taxon to all other known Lagerpetidae, whereas Ixalerpeton polesinensis Cabreira et al., 2016 is in a sister group relationship with a clade that includes PVSJ 883 and Dromomeron. Conversely, the other analysis supports an alternative topology, where I. polesinensis is the sister taxon to either L. chanarensis or all other Lagerpetidae. Although coeval and geographically close, I. polesinensis and PVSJ 883 do not form a clade exclusive of other lagerpetids. As previously suggested D. gigas Martínez, Apaldetti, Correa & Abelín, 2016 is the sister taxon of D. romeri Irmis et al., 2007. The phylogenetic analyses also indicate that the earliest lagerpetids are restricted to southwestern Pangea, whereas later forms spread across the entire western portion of the supercontinent. Finally, quantification of the codified characters of our analysis reveals that Lagerpetidae is one of the poorest known among the Triassic dinosauromorph groups in terms of their anatomy, so that new discoveries of more complete specimens are awaited to establish a more robust phylogeny. 


2000 ◽  
Vol 14 (6) ◽  
pp. 807 ◽  
Author(s):  
Erica Chiao ◽  
Joseph V. McHugh

A new phylogenetic hypothesis of Sphindidae (Coleoptera: Cucujoidea) ispresented, based on a cladistic analysis of 15 larval morphology characters inaddition to 39 adult morphology characters modified from a previous study by McHugh (1993). Results from the combined cladistic analyses show larval characters supporting several previously established relationships and resolving the placement of Notosphindus McHugh & Wheeler. The sister-group relationship betweenCarinisphindus McHugh and SphindusMegerle in Dejean is not supported by the combined analyses. Larval charactersdid not show a disproportionately strong impact on the more basal nodes.Incongruence length difference analysis found an insignificant level ofdiscordance (P = 0.197) between the adult andlarval based data sets. Larval Notosphindus slateriMcHugh & Wheeler, Genisphindus minor McHugh andCarinisphindus purpuricephalus McHugh & Lewis aredescribed for the first time, representing the first larval descriptions forthese genera. A literature review of immature stages of sphindid beetles and ageneric level key to larvae of the family are provided.


2000 ◽  
Vol 31 (1) ◽  
pp. 43-58 ◽  
Author(s):  
J.J. Morrone ◽  
A.E. Marvaldi

AbstractA cladistic analysis of Curculionoidea based on 100 morphological characters (28 from larvae and 72 from adults) is presented. The 13 terminal taxa correspond to 7 extant families of Curculionoidea of which the largest, Curculionidae, is represented by 7 smaller units. The terminal units are defined by morphological autapomorphies taken from published information on larvae and adults. The chrysomeloid Palophaginae was used as outgroup. The cladogram shows that there is a basal dichotomy in the superfamily, Nemonychidae-Anthribidae being the monophyletic sister taxon to the remaining families, which follow the sequence Belidae, Attelabidae, Caridae, Brentidae, and Curculionidae. The units of Curculionidae are related as follows: Ithycerinae, Microcerinae, Brachycerinae, Ocladiinae, Dryophthorinae, Erirhininae, and 'Curculionidae s.str.'. Important areas where further work should be directed are: the sister group relationship of Nemonychidae and Anthribidae, and the recognition of monophyletic subfamilies within the Curculionidae s.str. as well as the placement of Platypodinae.


2002 ◽  
Vol 39 (12) ◽  
pp. 1755-1765 ◽  
Author(s):  
Sean P Modesto ◽  
Bruce S Rubidge ◽  
Johann Welman

Two fragmentary skulls from the Upper Permian Tapinocephalus Assemblage Zone (Abrahamskraal Formation, Beaufort Group) in Eastern Cape Province, South Africa, represent a new dicynodont taxon. Lanthanocephalus mohoii gen. et sp. nov. is distinguished from other dicynodonts by the presence of a conspicuous laterally facing excavation on the dorsal surface of the postfrontal, by dorsal expansions of the supraoccipital that contact the parietals, and by extensive ossification of the lateral wall of the braincase. Lanthanocephalus features several characters that are suggestive of a close relationship with Endothiodon. These include a transversely narrow intertemporal region, the presence of a pineal boss, and the presence of a distinct boss on the ventral margin of the jugal. Cladistic analysis of a modified data matrix from the literature supports the hypothesis of a sister-group relationship between Lanthanocephalus and Endothiodon. However, this grouping and most others found in the analysis collapse with one extra step, weaknesses that underscore the need for further research on dicynodonts and other non-mammalian synapsids.


Zootaxa ◽  
2005 ◽  
Vol 835 (1) ◽  
pp. 1
Author(s):  
ALEXANDRE B. BONALDO ◽  
ANTONIO D. BRESCOVIT ◽  
CRISTINA A. RHEIMS

A fourth species of Ericaella, E. florezi n. sp., is described based on males and a female from Cauca, Colombia. A cladistic analysis of all known species of Ericaella, plus two outgroup species (Radulphius camacan Bonaldo and Eutichurus luridus Simon) is presented. The single optimal tree obtained depicted a sister group relationship between Ericaella longipes Chickering plus E. florezi sp. n. and E. samiria Bonaldo plus E. kaxinawa Bonaldo.


Zootaxa ◽  
2019 ◽  
Vol 4674 (3) ◽  
pp. 375-385
Author(s):  
EDUARDO DOMÍNGUEZ ◽  
MARÍA GABRIELA CUEZZO ◽  
SIMÓN CLAVIER

Four of the 43 genera of South American Leptophlebiidae are dipterous. A previous phylogenetic hypothesis supported that clade Askola+Hagenulopsis, and that Bessierus+Perissophlebiodes, are sister groups of the Farrodes complex. Adults of Bessierus and Perissophlebiodes were not known but posteriorly Perissophlebiodes male imago was described. Here, we describe the male imago of Bessierus for the first time. Both genera share, besides the absence of the hind wings, the asymmetrical fork of MA, symmetrical fork of MP, dissimilar tarsal claws, and forceps sockets fused. Along with the description of the imago, a new diagnosis for the genus Bessierus is presented, also updating the identification key with this new information. A new cladistics analysis is performed to test the stability of the proposed relationships of these four genera within Leptophlebiidae. We obtained a single cladistic hypothesis where the addition of Bessierus adult characters resulted in new synapomorphies for the (Bessierus, Perissophlebiodes) clade, and improved its clade statistical support. The fused forceps sockets resulted in a synapomorphy uniting Bessierus, Perissophlebiodes and Simothraulopsis. As a result of this new analysis, the hypothesis of independent losses of the hind wings in the two dipterous groups studied is supported. The Farrodes lineage is not supported as proposed in previous studies, being restricted only to (Farrodes (Simothraulopsis, Homothraulus)) while the identity of “Perissophlebiodes lineage” is supported. The sister group relationship of Rondophlebia is not clearly defined. 


2001 ◽  
Vol 15 (3) ◽  
pp. 353 ◽  
Author(s):  
Brian E. Heterick

The Australian ants of the genus Monomorium are revised. Fifty-nine species are recognised. Of these, 41 are described as new: Monomorium aithoderum, M. albipes, M. anderseni, M. anthracinum, M. arenarium, M. bifidum, M. bihamatum, M. brachythrix, M. burchera, M. capito, M. carinatum, M. castaneum, M. crinitum, M. decuria, M. disetigerum, M. draculai, M. durokoppinense, M. elegantulum, M. eremophilum, M. euryodon, M. flavonigrum, M. lacunosum, M. legulus, M. longinode, M. macarthuri, M. majeri, M. megalops, M. micula, M. nanum, M. nightcapense, M. nigriceps, M. parantarcticum, M. petiolatum, M. pubescens, M. ravenshoense, M. rufonigrum, M. shattucki, M. silaceum, M. stictonotum, M. striatifrons, and M. xantheklemma. Thirteen species pass into synonymy: M. armstrongi with M. whitei, M. broomense and M. ilia with M. laeve, M. donisthorpeiand M. fraterculus with M. fieldi, M. flavipes and M. insularis with M. leae, M. foreli with M. sordidum, M. howense with M. tambourinense, M. macareaveyi with M. bicorne, M. sanguinolentum with M. rubriceps, M. subapterum with M. rothsteini, and M. turneri withM. gilberti. Sixteen infraspecific forms are also synonymised: M. kilianii obscurelluminto M. kilianii, M. laeve nigriusand M. laeve fraterculus into M. fieldi, M. ilia lamingtonensisinto M. laeve, M. rothsteini humilior, M. rothsteini leda, M. rothsteini doddi and M. subapterum bogischi into M. rothsteini, M. rothsteini squamigena, M. rothsteini tostum and M. sordidum nigriventris into M. sordidum, M. fraterculus barretti and M. sydneyense nigella into M. sydneyense, M. gilberti mediorubra into M. gilberti, and M. rubriceps cinctumand M. rubriceps rubrum into M. rubriceps. Seventeen species and one subspecies are unchanged. Monomorium kiliani reverts to M. kilianii, M. kilianii tambourinenseis raised to species status, M. occidaneus is here treated as a species inquirenda, and M. flavigaster is removed from the genus Monomorium. Since the generic status of the latter taxon is uncertain, M. flavigaster is here regarded as incertae sedis. The supposedly extralimitalMonomorium talpa is synonymised under Monomorium australicum. At a higher taxonomic level the South American genus Antichthonidris is synonymised under Monomorium. Seven species-groups are proposed for the Australian fauna, (the bicorne-, falcatum-, insolescens-, kilianii-, longinode-, monomorium-, and rubriceps-groups). A cladistic analysis was undertaken of species for which all castes were examined (identifiable males and/or queens were lacking for all members of the falcatum-, insolescens- and longinode-groups). In all, fifteen species of Australian Monomorium were examined (M. bicorne, M. whitei, M. striatifrons and M. rufonigrum from the bicorne-group, M. crinitumand M. kilianii from the kilianii-group, M. fieldi, M. laeve, M. rothsteini, M. sordidum and M. sydneyense from the monomorium-group, and M. centrale, M. leae, M. euryodon and M. rubriceps from the rubriceps-group), together with Monomorium antarcticum(from New Zealand) and the Neotropical Antichthonidris denticulatus. The taxon used for the outgroup was the Neotropical ant Megalomyrmex modestus. Using the PAUP program, 37 characters for worker, queen and male castes were analysed. The clade incorporating the tiny generalists (M. fieldi, M. laeve, M. sordidum, and M. sydneyense), together with M. rothsteini, was found to be the clade most strongly supported as a monophyletic grouping. In this analysis M. euryodon was the sister taxon to the above clade. These ants were shown on this analysis to share a common ancestor with the other members of the rubriceps-group, with M. antarcticum and A. denticulatus, and with thekilianii-group. The relationships between these latter four sets of species were left unresolved, except that M. crinitum was shown to be the sister taxon to M. kilianii. The large, arid zone species in thebicorne-group were also shown as ancestral to the other Australian Monomorium. A key is provided to enable researchers to identify the workers of all Australian Monomorium, as well as extralimital species established in Australia.


1990 ◽  
Vol 122 (5) ◽  
pp. 985-1035 ◽  
Author(s):  
Y. Alarie ◽  
P.P. Harper ◽  
R.E. Roughley

AbstractA systematic analysis of larvae of 11 Nearctic species of Hygrotus Stephens was undertaken. The larvae are described and characterized; a key for their discrimination and illustrations of structural features of representatives of first- and third-instar larvae are provided. Many structural features, especially detailed variations in the chaetotaxy of cephalic capsule, head appendages, legs, last abdominal segment, and urogomphi, were found to be useful for systematic and phylogenetic comparisons. Based on 21 larval characters, a cladistic analysis of the species studied was developed. A sister-group relationship between H. laccophilinus (LeConte) and the remaining available species is suggested. The less derived species, i.e. those without natatory setae on the legs, appear phylogenetically more closely related to the larvae of Hydroporus s.str. Hygrotus masculinus (Crotch) is the most derived species of the genus and, for many characters, seems more closely related to Hyphydrini. According to larval morphology, it is hypothesized that the genus Hygrotus diverged posteriorly to the genus Hydroporus Clairville.


1998 ◽  
Vol 19 (4) ◽  
pp. 385-405 ◽  
Author(s):  
Van Wallach ◽  
Rainer Günther

AbstractThe internal anatomy of Xenophidion is described and compared with that of members of other snake families. A suite of primitive characters eliminates Xenophidion as a possible member of the Caenophidia; only two characters could conceivably suggest a relationship to the Caenophidia and both are examples of losses and thus of low phylogenetic value in assessing relationships. However, among lower snakes a sister group relationship is demonstrated with the Tropidophiidae of the Neotropical region. Besides possessing nearly identical viscera and topographical arrangement thereof, Xenophidion shares several characters with the Tropidophiidae. A new family is created to contain the genus, the Xenophidiidae. The Xenophidiidae share one synapomorphy with both the Tropidophiidae and Bolyeriidae. Therefore, it is proposed that these three families be united in the superfamily Tropidophioidea. A phylogenetic analysis of 52 characters results in the following preferred hypothesis of relationships: (Boinae, (((Bolyeria, Casarea), (Xenophidion, ((Exiliboa, Ungaliophis), (Trachyboa, Tropidophis)))), Acrochordus)).


Sign in / Sign up

Export Citation Format

Share Document