The effect of vertebrate predation on lotic macroinvertebrate communities in Québec, Canada

1986 ◽  
Vol 64 (9) ◽  
pp. 1930-1936 ◽  
Author(s):  
Seth R. Reice ◽  
Robert L. Edwards

To test the role of vertebrate predation on benthic community structure, experiments were performed in two third-order streams in northern Québec, Canada. Predators were either enclosed in or excluded from replicate benthic cages (20 × 30 × 10 cm). Ruisseau du Cran Carré (RCC) has a normal complement of fish, while Low Hope Creek (LHC) is fishless. In June 1983, two species of fish were manipulated (one fish per cage, five replicate cages per treatment) in RCC, while the salamander Eurycea bislineata was manipulated in LHC. In August 1983, brook trout fry were manipulated in both streams. It was anticipated that the fauna in LHC, having had no previous contact with fish, would be more susceptible to fish predation than the fauna of RCC. Gut analysis revealed that fish did feed in the cages. However, neither fish predation nor salamander predation had significant effects on prey communities in either stream in June. Community parameters (species richness and diversity, and total numbers of individuals) were not influenced by the presence or absence of fish or salamanders. In August, three-quarters of the taxa were more abundant without trout than with trout. However, few individual taxa were significantly affected by the fish. This effect was similar in both streams. By enclosing fish in a fishless stream, this experiment was designed to enhance the possible effects offish predation on the lotic macrobenthic community. This work strengthens the idea that brook trout are not major structuring agents of the macrobenthic communities of small streams.

2012 ◽  
Vol 3 (2) ◽  
pp. 209-222 ◽  
Author(s):  
John A. Sweka ◽  
Tyler Wagner ◽  
Jason Detar ◽  
David Kristine

Abstract Fisheries biologists often use backpack electrofishing to sample stream fish. A common goal of sampling is to estimate density and/or biomass to make inferences about the status and trends of fish populations. One challenge when estimating population size is determining an appropriate site or reach length to sample. In this study, we empirically determined the required length of stream that needs to be sampled, assuming the study design is one site per stream, in order to achieve a desired level of accuracy for brook trout density and biomass estimates in Pennsylvania headwater streams. Long sample reaches (600 m) were chosen on seven first to third order streams and these sites were broken into twelve 50-m subreaches. Each subreach was sampled by removal electrofishing techniques until either five electrofishing passes were completed or no brook trout were captured. The total density and biomass of brook trout over all 50-m subreaches was considered the “true” density and biomass for the entire reach. We then performed computer simulations in which various numbers of 50-m subreaches were randomly selected and catches from each subreach were summed within the first three electrofishing passes to simulate removal sampling of site lengths ranging from 50 to 550 m. Population estimates were made using a removal estimator and density and biomass were calculated using various stratification schemes based on fish age and size. Estimates of density and biomass were then compared to the true values to assess the possible range in bias of estimates for a given reach length. Results from our simulations suggest a 200- to 250-m-long or a 400- to 450-m-long stream reach or site is needed to estimate brook trout density and biomass within 50% and 25%, respectively, of the true density and biomass. This information and our methodology will be valuable to fisheries managers in developing standardized protocols for assessing trout populations in small streams.


1981 ◽  
Vol 16 (1) ◽  
pp. 45-58 ◽  
Author(s):  
G. Krantzberg ◽  
P.M. Stokes

Abstract An investigation was made of the effects exerted by benthic macroinvertebrate communities on copper speciation in sediments from a lake which is becoming acidified. In laboratory microcosms, benthic macroinvertebrate communities stimulated the flux of copper from sediment to water. The presence of the macro-benthos resulted in a redistribution of physico-chemical copper species within the sediment with a transfer from more strongly complexed forms (HC1 extractable) to adsorbed and cation exchangeable forms (MgCl2 extractable). The role of bio-turbation in copper transformations is discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153 ◽  
Author(s):  
Christophe Humbert ◽  
Thomas Noblet

To take advantage of the singular properties of matter, as well as to characterize it, we need to interact with it. The role of optical spectroscopies is to enable us to demonstrate the existence of physical objects by observing their response to light excitation. The ability of spectroscopy to reveal the structure and properties of matter then relies on mathematical functions called optical (or dielectric) response functions. Technically, these are tensor Green’s functions, and not scalar functions. The complexity of this tensor formalism sometimes leads to confusion within some articles and books. Here, we do clarify this formalism by introducing the physical foundations of linear and non-linear spectroscopies as simple and rigorous as possible. We dwell on both the mathematical and experimental aspects, examining extinction, infrared, Raman and sum-frequency generation spectroscopies. In this review, we thus give a personal presentation with the aim of offering the reader a coherent vision of linear and non-linear optics, and to remove the ambiguities that we have encountered in reference books and articles.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2249
Author(s):  
Éowyn M. S. Campbell ◽  
M. Cathryn Ryan

The majority of each year′s overwinter baseflow (i.e., winter streamflow) in a third-order eastern slopes tributary is generated from annual melting of high-elevation snowpack which is transmitted through carbonate and siliciclastic aquifers. The Little Elbow River and its tributaries drain a bedrock system formed by repeated thrust faults that express as the same siliciclastic and carbonate aquifers in repeating outcrops. Longitudinal sampling over an 18 km reach was conducted at the beginning of the overwinter baseflow season to assess streamflow provenance. Baseflow contributions from each of the two primary aquifer types were apportioned using sulfate, δ34SSO4, and silica concentrations, while δ18OH2O composition was used to evaluate relative temperature and/or elevation of the original precipitation. Baseflow in the upper reaches of the Little Elbow was generated from lower-elevation and/or warmer precipitation primarily stored in siliciclastic units. Counterintuitively, baseflow generated in the lower-elevation reaches originated from higher-elevation and/or colder precipitation stored in carbonate units. These findings illustrate the role of nested flow systems in mountain block recharge: higher-elevation snowmelt infiltrates through fracture systems in the cliff-forming—often higher-elevation—carbonates, moving to the lower-elevation valley through intermediate flow systems, while winter baseflow in local flow systems in the siliciclastic valleys reflects more influence from warmer precipitation. The relatively fast climatic warming of higher elevations may alter snowmelt timing, leaving winter water supply vulnerable to climatic change.


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Alexandre Bérubé Tellier ◽  
Paul E. Drevnick ◽  
Andrea Bertolo

<p>Ephippium pigmentation is a plastic trait which can be related to a trade-off between visual predation pressure and better protection of cladoceran eggs against different types of stress. Experimental studies showed that planktivorous fish exert a greater predation pressure on individuals carrying darker ephippia, but little is known about the variation of ephippium pigmentation along gradients of fish predation pressure in natural conditions. For this study, our experimental design included four small boreal lakes with known fish assemblages. Two of the lakes have viable brook trout (<em>Salvelinus fontinalis</em>) populations, whereas the other two lakes experienced brook trout extinctions during the 20<sup>th</sup> century. Cladoceran ephippia were extracted from sediment cores at layers corresponding to the documented post- extinction phase (1990's) and from an older layer (1950's) for which the brook trout population status is not known precisely. Our first objective was to determine whether brook trout extinction has a direct effect on both ephippium pigmentation and size. Our second objective was to give a preliminary assessment of the status of brook trout populations in the 1950's by comparing the variation in ephippia traits measured from this layer to those measured in the 1990's, for which the extinction patterns are well known. Cost-effective image analysis was used to assess variation in pigmentation levels in ephippia. This approach provided a proxy for the amount of melanin invested in each ephippium analysed. Our study clearly shows that ephippium pigmentation may represent a better indicator of the presence of fish predators than ephippium size, a trait that showed a less clear pattern of variation between lakes with and without fish. For the 1990's period, ephippia from fishless lakes were darker and showed a slight tendency to be larger than ephippia from lakes with brook trout. However, no clear differences in either ephippium size or pigmentation were observed between the 1990's and 1950's layers within each lake. This suggests that brook trout extinction already occurred before the 1950’s, or that brook trout population abundance was already extremely low before and after the 1990’s. Our preliminary study shows that ephippium pigmentation can be used as a tool to quickly assess present and past predation levels on zooplankton when only sediment samples are available.</p>


Sign in / Sign up

Export Citation Format

Share Document