scholarly journals Nested Recharge Systems in Mountain Block Hydrology: High-Elevation Snowpack Generates Low-Elevation Overwinter Baseflow in a Rocky Mountain River

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2249
Author(s):  
Éowyn M. S. Campbell ◽  
M. Cathryn Ryan

The majority of each year′s overwinter baseflow (i.e., winter streamflow) in a third-order eastern slopes tributary is generated from annual melting of high-elevation snowpack which is transmitted through carbonate and siliciclastic aquifers. The Little Elbow River and its tributaries drain a bedrock system formed by repeated thrust faults that express as the same siliciclastic and carbonate aquifers in repeating outcrops. Longitudinal sampling over an 18 km reach was conducted at the beginning of the overwinter baseflow season to assess streamflow provenance. Baseflow contributions from each of the two primary aquifer types were apportioned using sulfate, δ34SSO4, and silica concentrations, while δ18OH2O composition was used to evaluate relative temperature and/or elevation of the original precipitation. Baseflow in the upper reaches of the Little Elbow was generated from lower-elevation and/or warmer precipitation primarily stored in siliciclastic units. Counterintuitively, baseflow generated in the lower-elevation reaches originated from higher-elevation and/or colder precipitation stored in carbonate units. These findings illustrate the role of nested flow systems in mountain block recharge: higher-elevation snowmelt infiltrates through fracture systems in the cliff-forming—often higher-elevation—carbonates, moving to the lower-elevation valley through intermediate flow systems, while winter baseflow in local flow systems in the siliciclastic valleys reflects more influence from warmer precipitation. The relatively fast climatic warming of higher elevations may alter snowmelt timing, leaving winter water supply vulnerable to climatic change.

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2601 ◽  
Author(s):  
Yong Zhang ◽  
Shiyin Liu ◽  
Qiao Liu ◽  
Xin Wang ◽  
Zongli Jiang ◽  
...  

Runoff from high-elevation, debris-covered glaciers is a crucial water supply in the Tibetan Plateau (TP) and its surroundings, where insufficient debris thickness data make it difficult to analyze its influence. Here, we investigated the role of debris cover in runoff formation of the Hailuogou catchment in the south-eastern Tibetan Plateau for the 1988–2017 period, based on long-term observations combined with a physically based glacio-hydrological model. The catchment is characterized by extensive thin debris on the ablation zones of three debris-covered glaciers. An increasing trend in catchment runoff has been observed in the past three decades, more than 50% of which is attributed to glacier runoff in the last decade. With the exception of the influence of temperature rising and precipitation decreasing, our results underline the importance of debris cover and its spatial features in the glaciological and hydrological processes of the catchment, in which the acceleration effect of debris cover is dominant in the catchment. An experimental analysis indicated that the extraordinary excess meltwater in the catchment is generated from the debris-covered surface, especially the lower elevation region below 3600 m a.s.l.


1972 ◽  
Vol 48 ◽  
pp. 101-103
Author(s):  
R. J. Anderle

Locations of Doppler satellite observing stations have been revised to obtain a set which is more self-consistent and more consistent with the CIO pole. Residuals of satellite observations for 1970 have been analyzed using the new coordinates to determine mean and standard errors for five days of observations of latitude versus station, time of day, and elevation angle. The accuracy of the determination of latitude is about 4 meters at moderate and high elevation angles. But since more satellite passes occur at lower elevation angles, the accuracy of determination of a component of position based on five days of observation of one satellite is only about 2 meters.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153 ◽  
Author(s):  
Christophe Humbert ◽  
Thomas Noblet

To take advantage of the singular properties of matter, as well as to characterize it, we need to interact with it. The role of optical spectroscopies is to enable us to demonstrate the existence of physical objects by observing their response to light excitation. The ability of spectroscopy to reveal the structure and properties of matter then relies on mathematical functions called optical (or dielectric) response functions. Technically, these are tensor Green’s functions, and not scalar functions. The complexity of this tensor formalism sometimes leads to confusion within some articles and books. Here, we do clarify this formalism by introducing the physical foundations of linear and non-linear spectroscopies as simple and rigorous as possible. We dwell on both the mathematical and experimental aspects, examining extinction, infrared, Raman and sum-frequency generation spectroscopies. In this review, we thus give a personal presentation with the aim of offering the reader a coherent vision of linear and non-linear optics, and to remove the ambiguities that we have encountered in reference books and articles.


Author(s):  
Kathryn Brown ◽  
Andrew Hansen ◽  
Robert Keane ◽  
Lisa Graumlich

Considerable debate surrounds the persistence of quaking aspen (Populus tremuloides) communities in western North America. Loss of aspen cover has been documented in several studies in various Rocky Mountain ecosystems (Loope and Gruel 1973; Romme et al. 1995; Renkin and Despain 1996; Wirth et al. 1996; Baker et al. 1997; Kay 1997; Bartos and Campbell 1998; White et al. 1998; Gallant et al. 2003). Explanations for loss of aspen include conifer encroachment, fire exclusion, herbivory, and climatic fluctuations (Loope and Gruell 1973; Mueggler 1985; Bartos et al. 1994; Romme et al. 1995; Kay 1997; White et al. 1998). However, many studies documenting aspen decline have been geographically limited or based on a small sample of subjectively chosen stands (Barnett and Stohlgren 2001; Hessl 2002; Kaye et al. 2003).


1997 ◽  
Vol 35 (5) ◽  
pp. 11-17 ◽  
Author(s):  
Hans Brix

The larger aquatic plants growing in wetlands are usually called macrophytes. These include aquatic vascular plants, aquatic mosses and some larger algae. The presence or absence of aquatic macrophytes is one of the characteristics used to define wetlands, and as such macrophytes are an indispensable component of these ecosystems. As the most important removal processes in constructed treatment wetlands are based on physical and microbial processes, the role of the macrophytes in these has been questioned. This paper summarizes how macrophytes influence the treatment processes in wetlands. The most important functions of the macrophytes in relation to the treatment of wastewater are the physical effects the presence of the plants gives rise to. The macrophytes stabilise the surface of the beds, provide good conditions for physical filtration, prevent vertical flow systems from clogging, insulate the surface against frost during winter, and provide a huge surface area for attached microbial growth. Contrary to earlier belief, the growth of macrophytes does not increase the hydraulic conductivity of the substrate in soil-based subsurface flow constructed wetlands. The metabolism of the macrophytes affects the treatment processes to different extents depending on the type of the constructed wetland. Plant uptake of nutrients is only of quantitative importance in low-loaded systems (surface flow systems). Macrophyte mediated transfer of oxygen to the rhizosphere by leakage from roots increases aerobic degradation of organic matter and nitrification. The macrophytes have additional site-specific values by providing habitat for wildlife and making wastewater treatment systems aesthetically pleasing.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 451 ◽  
Author(s):  
Ehsan Akbari ◽  
Griffin B. Spychalski ◽  
Kaushik K. Rangharajan ◽  
Shaurya Prakash ◽  
Jonathan W. Song

Sprouting angiogenesis—the infiltration and extension of endothelial cells from pre-existing blood vessels—helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 685 ◽  
Author(s):  
Peng-Fei Han ◽  
Xu-Sheng Wang ◽  
Li Wan ◽  
Xiao-Wei Jiang ◽  
Fu-Sheng Hu

The groundwater divide within a plane has long been delineated as a water table ridge composed of the local top points of a water table. This definition has not been examined well for river basins. We developed a fundamental model of a two-dimensional unsaturated–saturated flow in a profile between two rivers. The exact groundwater divide can be identified from the boundary between two local flow systems and compared with the top of a water table. It is closer to the river of a higher water level than the top of a water table. The catchment area would be overestimated (up to ~50%) for a high river and underestimated (up to ~15%) for a low river by using the top of the water table. Furthermore, a pass-through flow from one river to another would be developed below two local flow systems when the groundwater divide is significantly close to a high river.


Sign in / Sign up

Export Citation Format

Share Document