Maternal adjustment of sex ratio in response to host size in the aphid parasitoid Ephedrus californicus

1991 ◽  
Vol 69 (6) ◽  
pp. 1489-1495 ◽  
Author(s):  
C. Cloutier ◽  
C. A. Lévesque ◽  
D. M. Eaves ◽  
M. Mackauer

It has been suggested that sex ratios dependent on host size are unlikely to evolve in parasitoid wasps developing in growing hosts because future host quality would not be predictable at the time of oviposition by the female. We used logistic regression to estimate the primary sex ratio of a solitary parasitoid of aphid nymphs, using data on offspring sex at the time of adult eclosion. The method corrects for any differential preadult mortality between male and female offspring. Male preadult mortality is estimated separately from data on male-only offspring produced by unmated females. This information is built into the statistical analysis of data on offspring sex at the time of eclosion of progeny of mated females to estimate female preadult mortality and the primary sex ratio. The method was used to demonstrate manipulation of offspring sex by females of the parasitoid Ephedrus californicus parasitizing large (third-instar) and small (first-instar) pea aphids, Acyrthosiphon pisum. Mated E. californicus females fertilized nearly 50% of their eggs laid in large host aphids but only about 20% of those laid in small hosts, the difference being highly significant. Parasitoid survival from oviposition to adult eclosion was about 10% higher in small hosts than in large hosts, but for a given host size, the incidence of survival did not differ significantly between the sexes. Therefore, differential preadult mortality had no effect on modifying the primary sex ratio under the experimental conditions. The results also indicated that female decisions about the sex of offspring were affected by previous experience with the range of host sizes available and were more flexible with large than with small hosts, which were allocated male progeny almost invariably. We discuss the evolution of sex-ratio manipulation in solitary hymenopterous parasitoids of the koinobiotic type, which develop in growing host stages, such as aphid nymphs, as opposed to eggs and pupae. Our data indicate that a growing host can represent a reliable resource that is predictable from its initial size, even though it has not reached its potential size at the time of parasitoid oviposition. At least in species such as E. californicus that attack a range of host instars differing widely in size and thus in potential for parasite growth, the ability to effect sex-ratio adjustments based on host size at the time of oviposition may help to maximize female reproductive success, despite any uncertainty about future host quality.

Author(s):  
Nuwan Weerawansha ◽  
Qiao Wang ◽  
Xiong Zhao He

Animals can adjust reproductive strategies in favour of corporation or competition in response to local population size and density, the two key factors of social environments. However, previous studies usually focus on either population size or density but ignore their interactions. Using a haplodiploid spider mite, Tetranychus ludeni Zacher, we carried out a factorial experiment in the laboratory to examine how ovipositing females adjust their fecundity and offspring sex ratio during their early reproductive life under various population size and density. We reveal that females laid significantly more eggs with increasing population size and significantly fewer eggs with increasing population density. This suggests that large populations favour cooperation between individuals and dense populations increase competition. We demonstrate a significant negative interaction of population size and density that resulted in significantly fewer eggs laid in the large and dense populations. Furthermore, we show that females significantly skewed the offspring sex ratio towards female-biased in small populations to reduce the local mate competition among their sons. However, population density incurred no significant impact on offspring sex ratio, while the significant positive interaction of population size and density significantly increased the proportion of female offspring in the large and dense populations, which will minimise food or space competition as females usually disperse after mating at crowded conditions. These results also suggest that population density affecting sex allocation in T. ludeni is intercorrelated with population size. This study provides evidence that animals can manipulate their reproductive output and adjust offspring sex ratio in response to various social environments, and the interactions of different socio-environmental factors may play significant roles.


2020 ◽  
Vol 16 (6) ◽  
pp. 20190929
Author(s):  
Renée C. Firman ◽  
Jamie N. Tedeschi ◽  
Francisco Garcia-Gonzalez

Mammal sex allocation research has focused almost exclusively on maternal traits, but it is now apparent that fathers can also influence offspring sex ratios. Parents that produce female offspring under conditions of intense male–male competition can benefit with greater assurance of maximized grand-parentage. Adaptive adjustment in the sperm sex ratio, for example with an increase in the production of X-chromosome bearing sperm (CBS), is one potential paternal mechanism for achieving female-biased sex ratios. Here, we tested this mechanistic hypothesis by varying the risk of male–male competition that male house mice perceived during development, and quantifying sperm sex ratios at sexual maturity. Our analyses revealed that males exposed to a competitive ‘risk’ produced lower proportions of Y-CBS compared to males that matured under ‘no risk’ of competition. We also explored whether testosterone production was linked to sperm sex ratio variation, but found no evidence to support this. We discuss our findings in relation to the adaptive value of sperm sex ratio adjustments and the role of steroid hormones in socially induced sex allocation.


2006 ◽  
Vol 34 (4) ◽  
pp. 562-565 ◽  
Author(s):  
C. Montchamp-Moreau

The sex-ratio trait, reported in a dozen Drosophila species, is a type of naturally occurring meiotic drive in which the driving elements are located on the X chromosome. Typically, as the result of a shortage of Y-bearing spermatozoa, males carrying a sex-ratio X chromosome produce a large excess of female offspring. The presence of sex-ratio chromosomes in a species can have considerable evolutionary consequences, because they can affect individual fitness and trigger extended intragenomic conflict. Here, I present the main results of the study performed in Drosophila simulans. In this species, the loss of Y-bearing spermatozoa is related to the inability of the Y chromosome sister-chromatids to separate properly during meiosis II. Fine genetic mapping has shown that the primary sex-ratio locus on the X chromosome contains two distorter elements acting synergistically, both of which are required for drive expression. One element has been genetically mapped to a tandem duplication. To infer the natural history of the trait, the pattern of DNA sequence polymorphism in the surrounding chromosomal region is being analysed in natural populations of D. simulans harbouring sex-ratio X chromosomes. Initial results have revealed the recent spread of a distorter allele.


1998 ◽  
Vol 88 (1) ◽  
pp. 37-45 ◽  
Author(s):  
K.M. Heinz

AbstractAn often encountered problem associated with augmentative and inundative biological control programmes is the high cost of producing sufficient numbers of natural enemies necessary to suppress pest populations within the time constraints imposed by ephemeral agroecosystems. In many arrhenotokous parasitoids, overproduction of males in mass-rearing cultures inflates costs (per female) and thus limits the economic feasibility of these biological control programmes. Within the context of existing production technologies, experiments were conducted to determine if the sex ratio ofCatolaccus grandis(Burks), an ectoparasitoid of the boll weevilAnthonomous grandisBoheman, varied as a function of boll weevil larval size. Results from natural and manipulative experiments demonstrate the following behavioural characteristics associated with C.grandissex allocation behaviour: (i) femaleC. grandisoffspring are produced on large size hosts and male offspring are produced on small hosts; (ii) whether a host is considered large or small depends upon the overall distribution of host sizes encountered by a female parasitoid; and (iii) female parasitoids exhibit a greater rate of increase in body size with host size than do male parasitoids. The observed patterns cannot be explained by sex-specific mortality of immature parasitoids developing on the different host size categories. In subsequent experiments, laboratory cultures ofC. grandisexposed daily to successively larger sizes ofA. grandislarvae produced successively greater female biased offspring sex ratios, cultures exposed daily to successively smaller sizes of host larvae produced successively greater male biased offspring sex ratios, and cultures exposed daily to equivalent host size distributions over time maintained a uniform offspring sex ratio. By increasing the average size ofA. grandislarval hosts exposed toC. grandisby 2.5 mg per day in mass rearing cultures, the percentage of male progeny can be reduced from 33% to 23% over a period of four consecutive exposure days.


2003 ◽  
Vol 51 (5) ◽  
pp. 505 ◽  
Author(s):  
Rebecca R. McIntosh ◽  
Romke Kats ◽  
Mathew Berg ◽  
Jan Komdeur ◽  
Mark A. Elgar

Little grassbirds (Megalurus gramineus) are small, sexually monomorphic passerines that live in reed beds, lignum swamps and salt marshes in southern Australia. The breeding biology and patterns of sex allocation of the little grassbird were investigated over a single breeding season. Our observations of this species in the Edithvale Wetland Reserve revealed a highly male-biased population sex ratio, with some breeding territories containing several additional males. Nevertheless, there was little compelling evidence that little grassbirds breed cooperatively. The growth rates of male and female nestlings were similar and, as predicted by theory, there was no overall primary sex ratio bias. However, the primary sex ratio was female-biased early in the breeding season and became increasingly male-biased later in the breeding season.


2018 ◽  
Vol 29 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Jing Li ◽  
Yu Wang ◽  
Cheng-Jie Zhu ◽  
Min Zhang ◽  
Hao-Yuan Hu

Localmate competition (LMC) models predict a female-biased offspring sex ratio when a single foundress oviposits alone in a patch and an increasing proportion of sons with increasing foundress number. We tested whether the solitary pupal parasitoid, Trichopria drosophilae (Hymenoptera: Diapriidae), adjusted offspring sex ratio with foundress number when parasitizing Drosophila melanogaster pupae. Mean number of female offspring was higher than that of males, with a male proportion of 26 ± 16% when only one foundress oviposited. However, male proportion reached 58 ± 26%, 48 ± 22%, and 51 ± 19% in three-, five and seven-foundress cohorts. That the male proportion of offspring increased with foundress number is consistent with LMC models.


Sign in / Sign up

Export Citation Format

Share Document