scholarly journals TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

2010 ◽  
Vol 67 (1-2) ◽  
pp. 213-227 ◽  
Author(s):  
Oleg Lychkovskiy ◽  
Sergei Blinnikov ◽  
Mikhail Vysotsky
2015 ◽  
Vol 30 (22) ◽  
pp. 1550130 ◽  
Author(s):  
Rupam Kalita ◽  
Debasish Borah

We study the effects of Majorana neutrino phases in lepton flavor violation and the origin of matter–antimatter asymmetry through the mechanism of leptogenesis within the framework of a model where both type I and type II seesaw mechanisms can contribute to tiny neutrino masses. We parametrize the type I seesaw mass matrix by assuming it to give rise to a tri-bimaximal (TBM) type neutrino mixing which predicts [Formula: see text]. The type II seesaw mass matrix is then constructed in such a way that the necessary deviation from TBM mixing and the best fit values of neutrino parameters can be obtained when both type I and type II seesaw contributions are taken into account. Considering both subleading as well as equally dominating type II seesaw term, we first constrain the Majorana CP phases from the requirement of producing correct baryon asymmetry through leptogenesis and then incorporating the experimental bounds on lepton flavor violating decays [Formula: see text] and [Formula: see text].


2005 ◽  
Vol 20 (06) ◽  
pp. 1180-1187 ◽  
Author(s):  
B. DUTTA ◽  
Y. MIMURA ◽  
R. N. MOHAPATRA

A minimal supersymmetric SO (10) model with one 10 and one 126 Higgs superfield predict all neutrino mixings as well as the solar mass difference squared in agreement with observations. However, the CKM CP phase is constrained to be in the second or third quadrant requiring a significant non-CKM component to CP violation to explain observations. We revisit this issue using type I and II seesaw formula for neutrino masses show that the addition of a nonrenormalizable term restores compatibility with neutrino data and CKM CP violation in both cases. We further find that the MSSM parameter tan β≥30 in the type I model and lepton flavor violation and lepton electric dipole moments are accessible to proposed experiments in both type I and type II models. We also discuss the unification of the gauge couplings in type I model which requires an intermediate scale.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Vincenzo Cirigliano ◽  
Kaori Fuyuto ◽  
Christopher Lee ◽  
Emanuele Mereghetti ◽  
Bin Yan

Abstract We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel ep→τX, within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various τ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in τ-e transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from pp→eτX at the Large Hadron Collider to decays of B mesons and τ leptons, such as τ→eγ, τ→eℓ+ℓ−, and crucially the hadronic modes τ→eY with Y∈π, K, ππ, Kπ, …. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by τ decays, while operators involving the c and b quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the τ tagger in hadronic channels, an exploration of background suppression through tagging b and c jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.


2006 ◽  
Vol 155 (1) ◽  
pp. 351-352
Author(s):  
Serguey Petcov ◽  
Tetsuo Shindou ◽  
Yasutaka Takanishi

Sign in / Sign up

Export Citation Format

Share Document