scholarly journals Magnetic response to applied electrostatic field in external magnetic field

Author(s):  
T. C. Adorno ◽  
D. M. Gitman ◽  
A. E. Shabad
2020 ◽  
pp. 174751982095860
Author(s):  
Mina Sakuragi ◽  
Yoshikazu Takahashi ◽  
Keito Ehara ◽  
Katsuki Kusakabe

The aim of this study is to develop self-standing, ultrathin film, nanosheets with high magnetic response for use in a medical device that can be migrated to a target location in the body by using an external magnetic field. First, iron oxide nanoparticles are synthesized by either the sol-gel method or thermal decomposition. The resulting magnetic properties of the nanoparticles show that the thermal decomposition method provides a greater saturation magnetization value than the sol-gel method. Next, the nanoparticles obtained by the thermal decomposition method are embedded into nanosheets of poly(L-lactide) at varying concentrations. Embedding of the nanoparticles in the composite nanosheets is achieved by the application of an external magnetic field. The composite nanosheets are then characterized. The thickness of the nanosheet increases, and the nanoparticles are well dispersed, with an increase in poly (L-lactide) concentration. The NP-embedded nanosheets are imaged by transmission electron microscopy, which reveals thin, long aggregates aligned in collinear line features. X-ray diffraction results indicate that the magnetic hard axis of the nanoparticles in the nanosheets is aligned in parallel to the plane of the nanosheet by magnetic field application during nanosheet preparation. In addition, the nanosheets at high poly (L-lactide) concentrations that had been subjected to a magnetic field during preparation show a slightly greater magnetic response compared with both nanosheets without magnetic field exposure and nanosheets prepared at low poly (L-lactide) concentrations.


Author(s):  
C. A. Aguirre ◽  
Q. Martins ◽  
Jose Barba

In the present work we studied the effect of the nature of the contacts, by which a weak external current is applied, in an anisotropic superconducting rectangle, on the magnetization, magnetic susceptibility, density of the Cooper pairs and  (magnetic field for which the first vortices entry on the sample). The contacts are simulates by the  parameter, and the anisotropy is present in sections with different critical temperatures modeling for  function, both in the Ginzburg-Landau formalis. Also, the sample is embebbed in an external magnetic field . We established how the nature of the contacts and the presence of a weak Lorentz Force, influence the magnetic response and the vortex state of the sample.


1980 ◽  
Vol 23 (3) ◽  
pp. 483-494 ◽  
Author(s):  
M. Nambu ◽  
S. Bujarbarua ◽  
P. K. Shukla ◽  
K. H. Spatschek

Acceleration of an electron by the electrostatic field of ion wave fluctuations is considered including the external magnetic field. It is found that an accelerated electron can emit unstable electromagnetic waves which propagate along the guide magnetic field. As an example, we discuss the generation of right-handed circularly polarized whistler waves. Application of our result to laboratory and space plasmas is examined.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1381-1391
Author(s):  
Mesías Orozco-Ic ◽  
Gabriel Merino

The aromaticity of [n]starphenes (n = 1, 4, 7, 10, 13, 16), as well as starphene-based [19]dendriphene, is addressed by calculating the magnetically induced current density and the induced magnetic field, using the pseudo-π model. When an external magnetic field is applied, these systems create diatropic currents that split into a global peripheral current surrounding the starphene skeleton and several local currents in the acene-based arms, resulting in large shielding cones above the arms. In particular, the arm currents are smaller than their linear analogs, and in general, the strengths of the ring currents tend to weaken as the starphene get larger.


1980 ◽  
Vol 41 (C1) ◽  
pp. C1-445-C1-445
Author(s):  
G. Langouche ◽  
N. S. Dixon ◽  
L. Gettner ◽  
S. S. Hanna

Sign in / Sign up

Export Citation Format

Share Document